Ergodic Quantum Computing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-06

AUTHORS

Dominik Janzing, Pawel Wocjan

ABSTRACT

We propose a (theoretical) model for quantum computation where the result can be read out from the time average of the Hamiltonian dynamics of a 2-dimensional crystal on a cylinder.The Hamiltonian is a spatially local interaction among Wigner–Seitz cells containing six qubits. The quantum circuit that is simulated is specified by the initialization of program qubits. As in Margolus’ Hamiltonian cellular automaton (implementing classical circuits), a propagating wave in a clock register controls asynchronously the application of the gates. However, in our approach all required initializations are basis states. After a while the synchronizing wave is essentially spread around the whole crystal. The circuit is designed such that the result is available with probability about 1/4 despite of the completely undefined computation step. This model reduces quantum computing to preparing basis states for some qubits, waiting, and measuring in the computational basis. Even though it may be unlikely to find our specific Hamiltonian in real solids, it is possible that also more natural interactions allow ergodic quantum computing. More... »

PAGES

129-158

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11128-005-4482-9

DOI

http://dx.doi.org/10.1007/s11128-005-4482-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004894678


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "IAKS Prof. Beth, Arbeitsgruppe Quantum Computing, Universit\u00e4t Karlsruhe, Am Fasanengarten 5, 76 131, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janzing", 
        "givenName": "Dominik", 
        "id": "sg:person.010302530541.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010302530541.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "IAKS Prof. Beth, Arbeitsgruppe Quantum Computing, Universit\u00e4t Karlsruhe, Am Fasanengarten 5, 76 131, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wocjan", 
        "givenName": "Pawel", 
        "id": "sg:person.01352654130.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352654130.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1986.tb12451.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000114744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008923572", 
          "https://doi.org/10.1007/bf01011339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.176.0525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063180324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139644075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098714332"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-06", 
    "datePublishedReg": "2005-06-01", 
    "description": "We propose a (theoretical) model for quantum computation where the result can be read out from the time average of the Hamiltonian dynamics of a 2-dimensional crystal on a cylinder.The Hamiltonian is a spatially local interaction among Wigner\u2013Seitz cells containing six qubits. The quantum circuit that is simulated is specified by the initialization of program qubits. As in Margolus\u2019 Hamiltonian cellular automaton (implementing classical circuits), a propagating wave in a clock register controls asynchronously the application of the gates. However, in our approach all required initializations are basis states. After a while the synchronizing wave is essentially spread around the whole crystal. The circuit is designed such that the result is available with probability about 1/4 despite of the completely undefined computation step. This model reduces quantum computing to preparing basis states for some qubits, waiting, and measuring in the computational basis. Even though it may be unlikely to find our specific Hamiltonian in real solids, it is possible that also more natural interactions allow ergodic quantum computing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11128-005-4482-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052742", 
        "issn": [
          "1570-0755", 
          "1573-1332"
        ], 
        "name": "Quantum Information Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Ergodic Quantum Computing", 
    "pagination": "129-158", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1752bd1b8800a277bcc83d0807d86ea9d86c6d65c8d8216654add26ef35fec56"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11128-005-4482-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004894678"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11128-005-4482-9", 
      "https://app.dimensions.ai/details/publication/pub.1004894678"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000339_0000000339/records_109505_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11128-005-4482-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11128-005-4482-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11128-005-4482-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11128-005-4482-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11128-005-4482-9'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11128-005-4482-9 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N6724ebb7011e4015a6e22086d7d09853
4 schema:citation sg:pub.10.1007/bf01011339
5 https://doi.org/10.1017/cbo9781139644075
6 https://doi.org/10.1111/j.1749-6632.1986.tb12451.x
7 https://doi.org/10.1147/rd.176.0525
8 schema:datePublished 2005-06
9 schema:datePublishedReg 2005-06-01
10 schema:description We propose a (theoretical) model for quantum computation where the result can be read out from the time average of the Hamiltonian dynamics of a 2-dimensional crystal on a cylinder.The Hamiltonian is a spatially local interaction among Wigner–Seitz cells containing six qubits. The quantum circuit that is simulated is specified by the initialization of program qubits. As in Margolus’ Hamiltonian cellular automaton (implementing classical circuits), a propagating wave in a clock register controls asynchronously the application of the gates. However, in our approach all required initializations are basis states. After a while the synchronizing wave is essentially spread around the whole crystal. The circuit is designed such that the result is available with probability about 1/4 despite of the completely undefined computation step. This model reduces quantum computing to preparing basis states for some qubits, waiting, and measuring in the computational basis. Even though it may be unlikely to find our specific Hamiltonian in real solids, it is possible that also more natural interactions allow ergodic quantum computing.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N23b942408eb3490a91f3ae8d9a171e39
15 Ne3a2c36f94aa421aba90b0e3d648a7e7
16 sg:journal.1052742
17 schema:name Ergodic Quantum Computing
18 schema:pagination 129-158
19 schema:productId N3c3323dcd5804d9292bac2ca9bcf41a5
20 Ndeef6dddb3e74a44836522210d05b6e7
21 Nf4843907f42944bb9c74408ce5e08128
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004894678
23 https://doi.org/10.1007/s11128-005-4482-9
24 schema:sdDatePublished 2019-04-11T09:19
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N8d0c6bd483f64bc7a34c569d694000b0
27 schema:url http://link.springer.com/10.1007%2Fs11128-005-4482-9
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N23b942408eb3490a91f3ae8d9a171e39 schema:issueNumber 2
32 rdf:type schema:PublicationIssue
33 N3c3323dcd5804d9292bac2ca9bcf41a5 schema:name readcube_id
34 schema:value 1752bd1b8800a277bcc83d0807d86ea9d86c6d65c8d8216654add26ef35fec56
35 rdf:type schema:PropertyValue
36 N6724ebb7011e4015a6e22086d7d09853 rdf:first sg:person.010302530541.21
37 rdf:rest N69a383ddf5434eeea7b07f5e5e74ed61
38 N69a383ddf5434eeea7b07f5e5e74ed61 rdf:first sg:person.01352654130.28
39 rdf:rest rdf:nil
40 N8d0c6bd483f64bc7a34c569d694000b0 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Ndeef6dddb3e74a44836522210d05b6e7 schema:name doi
43 schema:value 10.1007/s11128-005-4482-9
44 rdf:type schema:PropertyValue
45 Ne3a2c36f94aa421aba90b0e3d648a7e7 schema:volumeNumber 4
46 rdf:type schema:PublicationVolume
47 Nf4843907f42944bb9c74408ce5e08128 schema:name dimensions_id
48 schema:value pub.1004894678
49 rdf:type schema:PropertyValue
50 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
51 schema:name Information and Computing Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
54 schema:name Computation Theory and Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1052742 schema:issn 1570-0755
57 1573-1332
58 schema:name Quantum Information Processing
59 rdf:type schema:Periodical
60 sg:person.010302530541.21 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
61 schema:familyName Janzing
62 schema:givenName Dominik
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010302530541.21
64 rdf:type schema:Person
65 sg:person.01352654130.28 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
66 schema:familyName Wocjan
67 schema:givenName Pawel
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352654130.28
69 rdf:type schema:Person
70 sg:pub.10.1007/bf01011339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008923572
71 https://doi.org/10.1007/bf01011339
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1017/cbo9781139644075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098714332
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1111/j.1749-6632.1986.tb12451.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000114744
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1147/rd.176.0525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063180324
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
80 schema:name IAKS Prof. Beth, Arbeitsgruppe Quantum Computing, Universität Karlsruhe, Am Fasanengarten 5, 76 131, Karlsruhe, Germany
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...