The role of noise in alliance formation and collusion in conflicts View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-06

AUTHORS

James W. Boudreau, Shane Sanders, Nicholas Shunda

ABSTRACT

Many real-world conflicts are to some extent determined randomly by noise, and many also depend critically on the formation of alliances or long-run cooperative relationships. In this paper, we emphasize that the specific manner by which noise is modeled in contest success functions (CSFs) has implications for both the possibility of forming cooperative relationships and the features of such relationships. The key issue is that there are two distinct approaches to modeling noise in CSFs, each with their own merits and each leading to different results depending on which type of alliance formation is under consideration. In a one-shot conflict, we find that when noise is modeled as an exponential parameter in the CSF, there is a range of values for which an alliance between two parties can be beneficial; that is not the case for models with an additive noise parameter. In an infinitely repeated conflict setting, we again find discrepant results: with additive noise, sustaining collusion via Nash reversion strategies is easier the more noise there is and more difficult the larger the contest’s prize value, while an increase in the contest’s number of players can make sustaining collusion either more or less difficult. This is all in marked contrast to the case of an exponential noise parameter, when noise plays no impact on the sustainability of collusion. Given that alliances do occur in both scenarios in the real world, this contrast could be seen as supporting the importance of both specifications. More... »

PAGES

1-18

References to SciGraph publications

  • 2008-06. A stochastic derivation of the ratio form of contest success functions in PUBLIC CHOICE
  • 1996-06. Contest success functions in ECONOMIC THEORY
  • 2013-05. Incomplete information in rent-seeking contests in ECONOMIC THEORY
  • 1991-03. Collusion and rent-seeking in PUBLIC CHOICE
  • 2011-06. Incomplete property rights and overinvestment in SOCIAL CHOICE AND WELFARE
  • 2009-07. Generalized contest success functions in ECONOMIC THEORY
  • 2006-01. Fighting against the odds in ECONOMICS OF GOVERNANCE
  • 2006-01. A contest success function with a tractable noise parameter in PUBLIC CHOICE
  • 1994-10. Cooperative rent-seeking in PUBLIC CHOICE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11127-018-0564-y

    DOI

    http://dx.doi.org/10.1007/s11127-018-0564-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104348741


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Economics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Kennesaw State University", 
              "id": "https://www.grid.ac/institutes/grid.258509.3", 
              "name": [
                "Department of Economics, Finance and QA, Coles College of Business, Kennesaw State University, 1000 Chastain Road, 30144, Kennesaw, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boudreau", 
            "givenName": "James W.", 
            "id": "sg:person.010145534735.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145534735.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Syracuse University", 
              "id": "https://www.grid.ac/institutes/grid.264484.8", 
              "name": [
                "Department of Sport Management, Falk College of Sport and Human Dynamics, Syracuse University, 301 MacNaughton Hall, 13244, Syracuse, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sanders", 
            "givenName": "Shane", 
            "id": "sg:person.012722517475.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012722517475.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Redlands", 
              "id": "https://www.grid.ac/institutes/grid.267057.1", 
              "name": [
                "Department of Economics, University of Redlands, 1200 East Colton Avenue, P.O. Box 3080, 92373-0999, Redlands, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shunda", 
            "givenName": "Nicholas", 
            "id": "sg:person.012770373516.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012770373516.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.geb.2006.03.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001721016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-polisci-052213-040359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002577916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geb.2012.08.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002607629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejpoleco.2013.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003505987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jebo.2011.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007600664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00123862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008303655", 
              "https://doi.org/10.1007/bf00123862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00123862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008303655", 
              "https://doi.org/10.1007/bf00123862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00199-007-0328-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008631345", 
              "https://doi.org/10.1007/s00199-007-0328-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00199-007-0328-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008631345", 
              "https://doi.org/10.1007/s00199-007-0328-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1748-5991.2008.00036.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011529333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01053264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011990146", 
              "https://doi.org/10.1007/bf01053264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01053264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011990146", 
              "https://doi.org/10.1007/bf01053264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geb.2011.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012518934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2202/1935-1704.1795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013183285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11127-006-2461-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015423691", 
              "https://doi.org/10.1007/s11127-006-2461-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11127-006-2461-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015423691", 
              "https://doi.org/10.1007/s11127-006-2461-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10101-005-0094-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016522726", 
              "https://doi.org/10.1007/s10101-005-0094-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1468-0343.1989.tb00003.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017397978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00355-010-0481-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023108045", 
              "https://doi.org/10.1007/s00355-010-0481-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1475-4932.2012.00822.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028901194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/game.1994.1059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037101698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0176-2680(98)00027-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037670450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0531(86)90025-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040393323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1468-5876.t01-1-00255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042625271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1628/0932456022975277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042955287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1628/0932456022975277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042955287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01213906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045074156", 
              "https://doi.org/10.1007/bf01213906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01213906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045074156", 
              "https://doi.org/10.1007/bf01213906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmateco.2009.11.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046787477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11127-007-9242-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052248880", 
              "https://doi.org/10.1007/s11127-007-9242-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00199-011-0688-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053611139", 
              "https://doi.org/10.1007/s00199-011-0688-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1060883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069374901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1911077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069639360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2296617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069868156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2139/ssrn.2014994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102333758"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-06", 
        "datePublishedReg": "2019-06-01", 
        "description": "Many real-world conflicts are to some extent determined randomly by noise, and many also depend critically on the formation of alliances or long-run cooperative relationships. In this paper, we emphasize that the specific manner by which noise is modeled in contest success functions (CSFs) has implications for both the possibility of forming cooperative relationships and the features of such relationships. The key issue is that there are two distinct approaches to modeling noise in CSFs, each with their own merits and each leading to different results depending on which type of alliance formation is under consideration. In a one-shot conflict, we find that when noise is modeled as an exponential parameter in the CSF, there is a range of values for which an alliance between two parties can be beneficial; that is not the case for models with an additive noise parameter. In an infinitely repeated conflict setting, we again find discrepant results: with additive noise, sustaining collusion via Nash reversion strategies is easier the more noise there is and more difficult the larger the contest\u2019s prize value, while an increase in the contest\u2019s number of players can make sustaining collusion either more or less difficult. This is all in marked contrast to the case of an exponential noise parameter, when noise plays no impact on the sustainability of collusion. Given that alliances do occur in both scenarios in the real world, this contrast could be seen as supporting the importance of both specifications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11127-018-0564-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1027434", 
            "issn": [
              "0048-5829", 
              "1573-7101"
            ], 
            "name": "Public Choice", 
            "type": "Periodical"
          }
        ], 
        "name": "The role of noise in alliance formation and collusion in conflicts", 
        "pagination": "1-18", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "689d3e79c0288e2e5f02875f5c20b0eacf1f479faa0e46de56bfa7e1a8cfaa9c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11127-018-0564-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104348741"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11127-018-0564-y", 
          "https://app.dimensions.ai/details/publication/pub.1104348741"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000485.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s11127-018-0564-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11127-018-0564-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11127-018-0564-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11127-018-0564-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11127-018-0564-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      21 PREDICATES      54 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11127-018-0564-y schema:about anzsrc-for:14
    2 anzsrc-for:1402
    3 schema:author N7b68a599e26342df8687d61b34861d24
    4 schema:citation sg:pub.10.1007/bf00123862
    5 sg:pub.10.1007/bf01053264
    6 sg:pub.10.1007/bf01213906
    7 sg:pub.10.1007/s00199-007-0328-2
    8 sg:pub.10.1007/s00199-011-0688-5
    9 sg:pub.10.1007/s00355-010-0481-6
    10 sg:pub.10.1007/s10101-005-0094-1
    11 sg:pub.10.1007/s11127-006-2461-z
    12 sg:pub.10.1007/s11127-007-9242-1
    13 https://doi.org/10.1006/game.1994.1059
    14 https://doi.org/10.1016/0022-0531(86)90025-6
    15 https://doi.org/10.1016/j.ejpoleco.2013.11.004
    16 https://doi.org/10.1016/j.geb.2006.03.014
    17 https://doi.org/10.1016/j.geb.2011.05.003
    18 https://doi.org/10.1016/j.geb.2012.08.011
    19 https://doi.org/10.1016/j.jebo.2011.01.003
    20 https://doi.org/10.1016/j.jmateco.2009.11.012
    21 https://doi.org/10.1016/s0176-2680(98)00027-5
    22 https://doi.org/10.1111/1468-5876.t01-1-00255
    23 https://doi.org/10.1111/j.1468-0343.1989.tb00003.x
    24 https://doi.org/10.1111/j.1475-4932.2012.00822.x
    25 https://doi.org/10.1111/j.1748-5991.2008.00036.x
    26 https://doi.org/10.1146/annurev-polisci-052213-040359
    27 https://doi.org/10.1628/0932456022975277
    28 https://doi.org/10.2139/ssrn.2014994
    29 https://doi.org/10.2202/1935-1704.1795
    30 https://doi.org/10.2307/1060883
    31 https://doi.org/10.2307/1911077
    32 https://doi.org/10.2307/2296617
    33 schema:datePublished 2019-06
    34 schema:datePublishedReg 2019-06-01
    35 schema:description Many real-world conflicts are to some extent determined randomly by noise, and many also depend critically on the formation of alliances or long-run cooperative relationships. In this paper, we emphasize that the specific manner by which noise is modeled in contest success functions (CSFs) has implications for both the possibility of forming cooperative relationships and the features of such relationships. The key issue is that there are two distinct approaches to modeling noise in CSFs, each with their own merits and each leading to different results depending on which type of alliance formation is under consideration. In a one-shot conflict, we find that when noise is modeled as an exponential parameter in the CSF, there is a range of values for which an alliance between two parties can be beneficial; that is not the case for models with an additive noise parameter. In an infinitely repeated conflict setting, we again find discrepant results: with additive noise, sustaining collusion via Nash reversion strategies is easier the more noise there is and more difficult the larger the contest’s prize value, while an increase in the contest’s number of players can make sustaining collusion either more or less difficult. This is all in marked contrast to the case of an exponential noise parameter, when noise plays no impact on the sustainability of collusion. Given that alliances do occur in both scenarios in the real world, this contrast could be seen as supporting the importance of both specifications.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf sg:journal.1027434
    40 schema:name The role of noise in alliance formation and collusion in conflicts
    41 schema:pagination 1-18
    42 schema:productId N253dee0d0a5148339efae0bdc4cb994f
    43 N5f55fcc67e1e4bddabff67f3cadd3331
    44 N8f4f96f3bc184e8190207b19351b4b4f
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104348741
    46 https://doi.org/10.1007/s11127-018-0564-y
    47 schema:sdDatePublished 2019-04-10T13:06
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher Nd5880764222a4f1db87c9b61450686fc
    50 schema:url http://link.springer.com/10.1007/s11127-018-0564-y
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N253dee0d0a5148339efae0bdc4cb994f schema:name dimensions_id
    55 schema:value pub.1104348741
    56 rdf:type schema:PropertyValue
    57 N5f55fcc67e1e4bddabff67f3cadd3331 schema:name doi
    58 schema:value 10.1007/s11127-018-0564-y
    59 rdf:type schema:PropertyValue
    60 N7b68a599e26342df8687d61b34861d24 rdf:first sg:person.010145534735.37
    61 rdf:rest Nc29262b1836e43d89f67c86ccf51dd1f
    62 N8f4f96f3bc184e8190207b19351b4b4f schema:name readcube_id
    63 schema:value 689d3e79c0288e2e5f02875f5c20b0eacf1f479faa0e46de56bfa7e1a8cfaa9c
    64 rdf:type schema:PropertyValue
    65 Nc29262b1836e43d89f67c86ccf51dd1f rdf:first sg:person.012722517475.45
    66 rdf:rest Nf7518336eb4d4add9cc7904807a4f7b6
    67 Nd5880764222a4f1db87c9b61450686fc schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 Nf7518336eb4d4add9cc7904807a4f7b6 rdf:first sg:person.012770373516.52
    70 rdf:rest rdf:nil
    71 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Economics
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Applied Economics
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1027434 schema:issn 0048-5829
    78 1573-7101
    79 schema:name Public Choice
    80 rdf:type schema:Periodical
    81 sg:person.010145534735.37 schema:affiliation https://www.grid.ac/institutes/grid.258509.3
    82 schema:familyName Boudreau
    83 schema:givenName James W.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145534735.37
    85 rdf:type schema:Person
    86 sg:person.012722517475.45 schema:affiliation https://www.grid.ac/institutes/grid.264484.8
    87 schema:familyName Sanders
    88 schema:givenName Shane
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012722517475.45
    90 rdf:type schema:Person
    91 sg:person.012770373516.52 schema:affiliation https://www.grid.ac/institutes/grid.267057.1
    92 schema:familyName Shunda
    93 schema:givenName Nicholas
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012770373516.52
    95 rdf:type schema:Person
    96 sg:pub.10.1007/bf00123862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008303655
    97 https://doi.org/10.1007/bf00123862
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf01053264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011990146
    100 https://doi.org/10.1007/bf01053264
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf01213906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045074156
    103 https://doi.org/10.1007/bf01213906
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s00199-007-0328-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008631345
    106 https://doi.org/10.1007/s00199-007-0328-2
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s00199-011-0688-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053611139
    109 https://doi.org/10.1007/s00199-011-0688-5
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s00355-010-0481-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023108045
    112 https://doi.org/10.1007/s00355-010-0481-6
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s10101-005-0094-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016522726
    115 https://doi.org/10.1007/s10101-005-0094-1
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s11127-006-2461-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015423691
    118 https://doi.org/10.1007/s11127-006-2461-z
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s11127-007-9242-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052248880
    121 https://doi.org/10.1007/s11127-007-9242-1
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1006/game.1994.1059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037101698
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/0022-0531(86)90025-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040393323
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.ejpoleco.2013.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003505987
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.geb.2006.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001721016
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.geb.2011.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012518934
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.geb.2012.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002607629
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.jebo.2011.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007600664
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.jmateco.2009.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046787477
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/s0176-2680(98)00027-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037670450
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1111/1468-5876.t01-1-00255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042625271
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1111/j.1468-0343.1989.tb00003.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017397978
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1111/j.1475-4932.2012.00822.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028901194
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1111/j.1748-5991.2008.00036.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011529333
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1146/annurev-polisci-052213-040359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002577916
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1628/0932456022975277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042955287
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.2139/ssrn.2014994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102333758
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.2202/1935-1704.1795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013183285
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.2307/1060883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069374901
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.2307/1911077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069639360
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.2307/2296617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069868156
    162 rdf:type schema:CreativeWork
    163 https://www.grid.ac/institutes/grid.258509.3 schema:alternateName Kennesaw State University
    164 schema:name Department of Economics, Finance and QA, Coles College of Business, Kennesaw State University, 1000 Chastain Road, 30144, Kennesaw, GA, USA
    165 rdf:type schema:Organization
    166 https://www.grid.ac/institutes/grid.264484.8 schema:alternateName Syracuse University
    167 schema:name Department of Sport Management, Falk College of Sport and Human Dynamics, Syracuse University, 301 MacNaughton Hall, 13244, Syracuse, NY, USA
    168 rdf:type schema:Organization
    169 https://www.grid.ac/institutes/grid.267057.1 schema:alternateName University of Redlands
    170 schema:name Department of Economics, University of Redlands, 1200 East Colton Avenue, P.O. Box 3080, 92373-0999, Redlands, CA, USA
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...