Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Franz-Josef Schmitt, Züleyha Yenice Campbell, Mai Vi Bui, Anne Hüls, Tatsuya Tomo, Min Chen, Eugene G. Maksimov, Suleyman I. Allakhverdiev, Thomas Friedrich

ABSTRACT

The phototrophic cyanobacterium Halomicronema hongdechloris shows far-red light-induced accumulation of chlorophyll (Chl) f, but the involvement of the pigment in photosynthetic energy harvesting by photosystem (PS) II is controversially discussed. While H. hongdechloris contains negligible amounts of Chl f in white-light culture conditions, the ratio of Chl f to Chl a is reversibly changed up to 1:8 under illumination with far-red light (720-730 nm). We performed UV-Vis absorption spectroscopy, time-integrated and time-resolved fluorescence spectroscopy for the calculation of decay-associated spectra (DAS) to determine excitation energy transfer (EET) processes between photosynthetic pigments in intact H. hongdechloris filaments. In cells grown under white light, highly efficient EET occurs from phycobilisomes (PBSs) to Chl a with an apparent time constant of about 100 ps. Charge separation occurs with a typical apparent time constant of 200-300 ps from Chl a. After 3-4 days of growth under far-red light, robust Chl f content was observed in H. hongdechloris and EET from PBSs reached Chl f efficiently within 200 ps. It is proposed based on mathematical modeling by rate equation systems for EET between the PBSs and PSII and subsequent electron transfer (ET) that charge separation occurs from Chl a and excitation energy is funneled from Chl f to Chl a via an energetically uphill EET driven by entropy, which is effective because the number of Chl a molecules coupled to Chl f is at least eight- to tenfold larger than the corresponding number of Chl f molecules. The long lifetime of Chl f molecules in contact to a tenfold larger pool of Chl a molecules allows Chl f to act as an intermediate energy storage level, from which the Gibbs free energy difference between Chl f and Chl a can be overcome by taking advantage from the favorable ratio of degeneracy coefficients, which formally represents a significant entropy gain in the Eyring formulation of the Arrhenius law. Direct evidence for energetically uphill EET and charge separation in PSII upon excitation of Chl f via anti-Stokes fluorescence in far-red light-adapted H. hongdechloris cells was obtained: Excitation by 720 nm laser light resulted in robust Chl a fluorescence at 680 nm that was distinctly temperature-dependent and, notably, increased upon DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) treatment in far-red light-adapted cells. Thus, rather than serving as an excitation energy trap, Chl f in far-red light-adapted H. hongdechloris cells is directly contributing to oxygenic photosynthesis at PSII. More... »

PAGES

185-201

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11120-018-0556-2

DOI

http://dx.doi.org/10.1007/s11120-018-0556-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105775703

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30039357


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlorophyll", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Entropy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosystem II Protein Complex", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Institute of Chemistry PC 14, Technical University of Berlin, Stra\u00dfe des 17. Juni 135, 10623, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmitt", 
        "givenName": "Franz-Josef", 
        "id": "sg:person.01026015455.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026015455.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Institute of Chemistry PC 14, Technical University of Berlin, Stra\u00dfe des 17. Juni 135, 10623, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campbell", 
        "givenName": "Z\u00fcleyha Yenice", 
        "id": "sg:person.013651512174.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651512174.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Institute of Chemistry PC 14, Technical University of Berlin, Stra\u00dfe des 17. Juni 135, 10623, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bui", 
        "givenName": "Mai Vi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Institute of Chemistry PC 14, Technical University of Berlin, Stra\u00dfe des 17. Juni 135, 10623, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00fcls", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Science", 
          "id": "https://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1\u20133, Shinjuku\u2011Ku, 162\u20118601, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomo", 
        "givenName": "Tatsuya", 
        "id": "sg:person.01100275215.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100275215.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "School of Life and Environmental Sciences, University of Sydney, 2006, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Min", 
        "id": "sg:person.0710721002.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710721002.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskye Gory 1, bld.\n24, 119991, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maksimov", 
        "givenName": "Eugene G.", 
        "id": "sg:person.0767401545.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767401545.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Basic Biological Problems", 
          "id": "https://www.grid.ac/institutes/grid.418820.7", 
          "name": [
            "Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russian Federation", 
            "Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, 1073, Baku, Azerbaijan", 
            "Moscow Institute of Physics and Technology, Institutsky Lane 9, 141700, Dolgoprudny, Moscow Region, Russian Federation", 
            "Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russian Federation", 
            "Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allakhverdiev", 
        "givenName": "Suleyman I.", 
        "id": "sg:person.01170561557.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170561557.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Institute of Chemistry PC 14, Technical University of Berlin, Stra\u00dfe des 17. Juni 135, 10623, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Friedrich", 
        "givenName": "Thomas", 
        "id": "sg:person.01063433562.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063433562.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0006297916030020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001400187", 
          "https://doi.org/10.1134/s0006297916030020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0701847104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003420806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-007-9256-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006149518", 
          "https://doi.org/10.1007/s11120-007-9256-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2012.06.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006216706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-005-9002-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008280966", 
          "https://doi.org/10.1007/s11120-005-9002-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-005-9002-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008280966", 
          "https://doi.org/10.1007/s11120-005-9002-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-2728(02)00399-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012289571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-2728(02)00399-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012289571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jplph.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014920948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2014.00067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015523535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-4832-3289-8.50010-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019200434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-015-0091-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019211762", 
          "https://doi.org/10.1007/s11120-015-0091-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1100173108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020976233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbabio.2004.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022137236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbabio.2011.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024823296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(97)00631-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025058966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-46312-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025074156", 
          "https://doi.org/10.1007/978-0-387-46312-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-46312-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025074156", 
          "https://doi.org/10.1007/978-0-387-46312-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b512350j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026527694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b512350j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026527694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbabio.2014.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027023252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-biochem-072711-162943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027988191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbabio.2012.02.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030972330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002030000194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032575444", 
          "https://doi.org/10.1007/s002030000194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(03)01383-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035125164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbabio.2007.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036003263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphotobiol.2011.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036645515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-2728(99)00048-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036703224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2005.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038643896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbabio.2015.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044157831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-014-9981-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045208440", 
          "https://doi.org/10.1007/s11120-014-9981-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0913460107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047424275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00016556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047864785", 
          "https://doi.org/10.1007/bf00016556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00016556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047864785", 
          "https://doi.org/10.1007/bf00016556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-2728(99)00095-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048030596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2011.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048738553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1191127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049092005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(01)75709-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049220840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.689127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049572040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/life5010004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050436856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/383402a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051777784", 
          "https://doi.org/10.1038/383402a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi992659r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055218928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi992659r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055218928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp111306k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056080871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp111306k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056080871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp980589c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056126847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp980589c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056126847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ol400327j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056254236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/pcp/pcv122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059971956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaf9178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062667962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-017-0428-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091580709", 
          "https://doi.org/10.1007/s11120-017-0428-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11099-018-0776-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100288127", 
          "https://doi.org/10.1007/s11099-018-0776-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "The phototrophic cyanobacterium Halomicronema hongdechloris shows far-red light-induced accumulation of chlorophyll (Chl) f, but the involvement of the pigment in photosynthetic energy harvesting by photosystem (PS) II is controversially discussed. While H. hongdechloris contains negligible amounts of Chl f in white-light culture conditions, the ratio of Chl f to Chl a is reversibly changed up to 1:8 under illumination with far-red light (720-730\u00a0nm). We performed UV-Vis absorption spectroscopy, time-integrated and time-resolved fluorescence spectroscopy for the calculation of decay-associated spectra (DAS) to determine excitation energy transfer (EET) processes between photosynthetic pigments in intact H. hongdechloris filaments. In cells grown under white light, highly efficient EET occurs from phycobilisomes (PBSs) to Chl a with an apparent time constant of about 100\u00a0ps. Charge separation occurs with a typical apparent time constant of 200-300\u00a0ps from Chl a. After 3-4 days of growth under far-red light, robust Chl f content was observed in H. hongdechloris and EET from PBSs reached Chl f efficiently within 200\u00a0ps. It is proposed based on mathematical modeling by rate equation systems for EET between the PBSs and PSII and subsequent electron transfer (ET) that charge separation occurs from Chl a and excitation energy is funneled from Chl f to Chl a via an energetically uphill EET driven by entropy, which is effective because the number of Chl a molecules coupled to Chl f is at least eight- to tenfold larger than the corresponding number of Chl f molecules. The long lifetime of Chl f molecules in contact to a tenfold larger pool of Chl a molecules allows Chl f to act as an intermediate energy storage level, from which the Gibbs free energy difference between Chl f and Chl a can be overcome by taking advantage from the favorable ratio of degeneracy coefficients, which formally represents a significant entropy gain in the Eyring formulation of the Arrhenius law. Direct evidence for energetically uphill EET and charge separation in PSII upon excitation of Chl f via anti-Stokes fluorescence in far-red light-adapted H. hongdechloris cells was obtained: Excitation by 720\u00a0nm laser light resulted in robust Chl a fluorescence at 680\u00a0nm that was distinctly temperature-dependent and, notably, increased upon DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) treatment in far-red light-adapted cells. Thus, rather than serving as an excitation energy trap, Chl f in far-red light-adapted H. hongdechloris cells is directly contributing to oxygenic photosynthesis at PSII.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11120-018-0556-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6135245", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7524568", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4897405", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5847550", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7594586", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3931463", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6833096", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1022986", 
        "issn": [
          "0166-8595", 
          "1573-5079"
        ], 
        "name": "Photosynthesis Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "139"
      }
    ], 
    "name": "Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light", 
    "pagination": "185-201", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "83dde6a9659fd6f41ec529f7ce08f7d93eb340978238b260ba4dd597129c9f4f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30039357"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100954728"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11120-018-0556-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105775703"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11120-018-0556-2", 
      "https://app.dimensions.ai/details/publication/pub.1105775703"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60347_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11120-018-0556-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11120-018-0556-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11120-018-0556-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11120-018-0556-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11120-018-0556-2'


 

This table displays all metadata directly associated to this object as RDF triples.

316 TRIPLES      21 PREDICATES      78 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11120-018-0556-2 schema:about N5397947ea1e84331a2a0be5e5daecf68
2 N7d088e9114c74daaa58a50de4e10fb10
3 Na828bb2142554b5ea83709d87242ff82
4 Ndd55f93419df488c85749fcb0a8e6d31
5 Ne8966c3278cf4cdf97020268ec22d7a4
6 anzsrc-for:03
7 anzsrc-for:0306
8 schema:author N69f01405845b4d5790203eab853e9503
9 schema:citation sg:pub.10.1007/978-0-387-46312-4
10 sg:pub.10.1007/bf00016556
11 sg:pub.10.1007/s002030000194
12 sg:pub.10.1007/s11099-018-0776-x
13 sg:pub.10.1007/s11120-005-9002-3
14 sg:pub.10.1007/s11120-007-9256-z
15 sg:pub.10.1007/s11120-014-9981-z
16 sg:pub.10.1007/s11120-015-0091-3
17 sg:pub.10.1007/s11120-017-0428-1
18 sg:pub.10.1038/383402a0
19 sg:pub.10.1134/s0006297916030020
20 https://doi.org/10.1016/b978-1-4832-3289-8.50010-2
21 https://doi.org/10.1016/j.bbabio.2004.08.009
22 https://doi.org/10.1016/j.bbabio.2007.02.018
23 https://doi.org/10.1016/j.bbabio.2011.06.007
24 https://doi.org/10.1016/j.bbabio.2012.02.026
25 https://doi.org/10.1016/j.bbabio.2014.04.009
26 https://doi.org/10.1016/j.bbabio.2015.10.009
27 https://doi.org/10.1016/j.febslet.2012.06.045
28 https://doi.org/10.1016/j.jphotobiol.2011.02.017
29 https://doi.org/10.1016/j.jplph.2011.02.002
30 https://doi.org/10.1016/j.tplants.2005.06.005
31 https://doi.org/10.1016/j.tplants.2011.03.011
32 https://doi.org/10.1016/s0005-2728(02)00399-7
33 https://doi.org/10.1016/s0005-2728(99)00048-1
34 https://doi.org/10.1016/s0005-2728(99)00095-x
35 https://doi.org/10.1016/s0006-3495(01)75709-8
36 https://doi.org/10.1016/s0014-5793(03)01383-8
37 https://doi.org/10.1016/s0014-5793(97)00631-5
38 https://doi.org/10.1021/bi992659r
39 https://doi.org/10.1021/jp111306k
40 https://doi.org/10.1021/jp980589c
41 https://doi.org/10.1021/ol400327j
42 https://doi.org/10.1039/b512350j
43 https://doi.org/10.1073/pnas.0701847104
44 https://doi.org/10.1073/pnas.0913460107
45 https://doi.org/10.1073/pnas.1100173108
46 https://doi.org/10.1093/pcp/pcv122
47 https://doi.org/10.1117/12.689127
48 https://doi.org/10.1126/science.1191127
49 https://doi.org/10.1126/science.aaf9178
50 https://doi.org/10.1146/annurev-biochem-072711-162943
51 https://doi.org/10.3389/fpls.2014.00067
52 https://doi.org/10.3390/life5010004
53 schema:datePublished 2019-03
54 schema:datePublishedReg 2019-03-01
55 schema:description The phototrophic cyanobacterium Halomicronema hongdechloris shows far-red light-induced accumulation of chlorophyll (Chl) f, but the involvement of the pigment in photosynthetic energy harvesting by photosystem (PS) II is controversially discussed. While H. hongdechloris contains negligible amounts of Chl f in white-light culture conditions, the ratio of Chl f to Chl a is reversibly changed up to 1:8 under illumination with far-red light (720-730 nm). We performed UV-Vis absorption spectroscopy, time-integrated and time-resolved fluorescence spectroscopy for the calculation of decay-associated spectra (DAS) to determine excitation energy transfer (EET) processes between photosynthetic pigments in intact H. hongdechloris filaments. In cells grown under white light, highly efficient EET occurs from phycobilisomes (PBSs) to Chl a with an apparent time constant of about 100 ps. Charge separation occurs with a typical apparent time constant of 200-300 ps from Chl a. After 3-4 days of growth under far-red light, robust Chl f content was observed in H. hongdechloris and EET from PBSs reached Chl f efficiently within 200 ps. It is proposed based on mathematical modeling by rate equation systems for EET between the PBSs and PSII and subsequent electron transfer (ET) that charge separation occurs from Chl a and excitation energy is funneled from Chl f to Chl a via an energetically uphill EET driven by entropy, which is effective because the number of Chl a molecules coupled to Chl f is at least eight- to tenfold larger than the corresponding number of Chl f molecules. The long lifetime of Chl f molecules in contact to a tenfold larger pool of Chl a molecules allows Chl f to act as an intermediate energy storage level, from which the Gibbs free energy difference between Chl f and Chl a can be overcome by taking advantage from the favorable ratio of degeneracy coefficients, which formally represents a significant entropy gain in the Eyring formulation of the Arrhenius law. Direct evidence for energetically uphill EET and charge separation in PSII upon excitation of Chl f via anti-Stokes fluorescence in far-red light-adapted H. hongdechloris cells was obtained: Excitation by 720 nm laser light resulted in robust Chl a fluorescence at 680 nm that was distinctly temperature-dependent and, notably, increased upon DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) treatment in far-red light-adapted cells. Thus, rather than serving as an excitation energy trap, Chl f in far-red light-adapted H. hongdechloris cells is directly contributing to oxygenic photosynthesis at PSII.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf Ne6180b0f12ea44caae83796c15c2fe16
60 Nf0ef2b2dfd62414d8bb405e03eb1e839
61 sg:journal.1022986
62 schema:name Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light
63 schema:pagination 185-201
64 schema:productId N0a6183e607d4419b8e1535912f94e089
65 N3bdfcca0a0cd448bbf727bac1e054cad
66 N6fa7f44e44fc44eb8eda9ae0924192a3
67 N71ce169502e340d4b8e09fa7dd5ea850
68 Na83ef54662a24ac1a5e752f07ef2b2e3
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105775703
70 https://doi.org/10.1007/s11120-018-0556-2
71 schema:sdDatePublished 2019-04-11T11:01
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Na1c9f3d1369d4adfbb812b071049b487
74 schema:url https://link.springer.com/10.1007%2Fs11120-018-0556-2
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N0a6183e607d4419b8e1535912f94e089 schema:name pubmed_id
79 schema:value 30039357
80 rdf:type schema:PropertyValue
81 N3bdfcca0a0cd448bbf727bac1e054cad schema:name readcube_id
82 schema:value 83dde6a9659fd6f41ec529f7ce08f7d93eb340978238b260ba4dd597129c9f4f
83 rdf:type schema:PropertyValue
84 N5397947ea1e84331a2a0be5e5daecf68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Photosystem II Protein Complex
86 rdf:type schema:DefinedTerm
87 N5964eeb343e94ce1a237e92184870bff schema:affiliation https://www.grid.ac/institutes/grid.6734.6
88 schema:familyName Bui
89 schema:givenName Mai Vi
90 rdf:type schema:Person
91 N69f01405845b4d5790203eab853e9503 rdf:first sg:person.01026015455.84
92 rdf:rest Nccfb5a6dba4f473fabc13c667e7fa0c7
93 N6fa7f44e44fc44eb8eda9ae0924192a3 schema:name doi
94 schema:value 10.1007/s11120-018-0556-2
95 rdf:type schema:PropertyValue
96 N71ce169502e340d4b8e09fa7dd5ea850 schema:name dimensions_id
97 schema:value pub.1105775703
98 rdf:type schema:PropertyValue
99 N7cbb389df7d942ff90d864be67fea49d rdf:first sg:person.01100275215.16
100 rdf:rest Ncb4a7d53dad74ec3b0db953614525454
101 N7d088e9114c74daaa58a50de4e10fb10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Photosynthesis
103 rdf:type schema:DefinedTerm
104 N7dbf6a7e54a049fa9566b42431dc904e rdf:first sg:person.01170561557.27
105 rdf:rest Nc734906dec494b3c82d82e4ce09c04c2
106 Na1c9f3d1369d4adfbb812b071049b487 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Na828bb2142554b5ea83709d87242ff82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Entropy
110 rdf:type schema:DefinedTerm
111 Na83ef54662a24ac1a5e752f07ef2b2e3 schema:name nlm_unique_id
112 schema:value 100954728
113 rdf:type schema:PropertyValue
114 Nb56b414c921b4195b7ad9787644fdcb9 rdf:first Ndd136e75dcc24892b2b9098d539a49eb
115 rdf:rest N7cbb389df7d942ff90d864be67fea49d
116 Nc734906dec494b3c82d82e4ce09c04c2 rdf:first sg:person.01063433562.67
117 rdf:rest rdf:nil
118 Ncb4a7d53dad74ec3b0db953614525454 rdf:first sg:person.0710721002.49
119 rdf:rest Nfdc03cc52e3941a1992320cd14c6e74a
120 Nccfb5a6dba4f473fabc13c667e7fa0c7 rdf:first sg:person.013651512174.50
121 rdf:rest Nd9374aaa6a9e48308ef04eeed39f3b4b
122 Nd9374aaa6a9e48308ef04eeed39f3b4b rdf:first N5964eeb343e94ce1a237e92184870bff
123 rdf:rest Nb56b414c921b4195b7ad9787644fdcb9
124 Ndd136e75dcc24892b2b9098d539a49eb schema:affiliation https://www.grid.ac/institutes/grid.6734.6
125 schema:familyName Hüls
126 schema:givenName Anne
127 rdf:type schema:Person
128 Ndd55f93419df488c85749fcb0a8e6d31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Chlorophyll
130 rdf:type schema:DefinedTerm
131 Ne6180b0f12ea44caae83796c15c2fe16 schema:volumeNumber 139
132 rdf:type schema:PublicationVolume
133 Ne8966c3278cf4cdf97020268ec22d7a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Light
135 rdf:type schema:DefinedTerm
136 Nf0ef2b2dfd62414d8bb405e03eb1e839 schema:issueNumber 1-3
137 rdf:type schema:PublicationIssue
138 Nfdc03cc52e3941a1992320cd14c6e74a rdf:first sg:person.0767401545.39
139 rdf:rest N7dbf6a7e54a049fa9566b42431dc904e
140 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
141 schema:name Chemical Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
144 schema:name Physical Chemistry (incl. Structural)
145 rdf:type schema:DefinedTerm
146 sg:grant.3931463 http://pending.schema.org/fundedItem sg:pub.10.1007/s11120-018-0556-2
147 rdf:type schema:MonetaryGrant
148 sg:grant.4897405 http://pending.schema.org/fundedItem sg:pub.10.1007/s11120-018-0556-2
149 rdf:type schema:MonetaryGrant
150 sg:grant.5847550 http://pending.schema.org/fundedItem sg:pub.10.1007/s11120-018-0556-2
151 rdf:type schema:MonetaryGrant
152 sg:grant.6135245 http://pending.schema.org/fundedItem sg:pub.10.1007/s11120-018-0556-2
153 rdf:type schema:MonetaryGrant
154 sg:grant.6833096 http://pending.schema.org/fundedItem sg:pub.10.1007/s11120-018-0556-2
155 rdf:type schema:MonetaryGrant
156 sg:grant.7524568 http://pending.schema.org/fundedItem sg:pub.10.1007/s11120-018-0556-2
157 rdf:type schema:MonetaryGrant
158 sg:grant.7594586 http://pending.schema.org/fundedItem sg:pub.10.1007/s11120-018-0556-2
159 rdf:type schema:MonetaryGrant
160 sg:journal.1022986 schema:issn 0166-8595
161 1573-5079
162 schema:name Photosynthesis Research
163 rdf:type schema:Periodical
164 sg:person.01026015455.84 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
165 schema:familyName Schmitt
166 schema:givenName Franz-Josef
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026015455.84
168 rdf:type schema:Person
169 sg:person.01063433562.67 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
170 schema:familyName Friedrich
171 schema:givenName Thomas
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063433562.67
173 rdf:type schema:Person
174 sg:person.01100275215.16 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
175 schema:familyName Tomo
176 schema:givenName Tatsuya
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100275215.16
178 rdf:type schema:Person
179 sg:person.01170561557.27 schema:affiliation https://www.grid.ac/institutes/grid.418820.7
180 schema:familyName Allakhverdiev
181 schema:givenName Suleyman I.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170561557.27
183 rdf:type schema:Person
184 sg:person.013651512174.50 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
185 schema:familyName Campbell
186 schema:givenName Züleyha Yenice
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651512174.50
188 rdf:type schema:Person
189 sg:person.0710721002.49 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
190 schema:familyName Chen
191 schema:givenName Min
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710721002.49
193 rdf:type schema:Person
194 sg:person.0767401545.39 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
195 schema:familyName Maksimov
196 schema:givenName Eugene G.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767401545.39
198 rdf:type schema:Person
199 sg:pub.10.1007/978-0-387-46312-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025074156
200 https://doi.org/10.1007/978-0-387-46312-4
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/bf00016556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047864785
203 https://doi.org/10.1007/bf00016556
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s002030000194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032575444
206 https://doi.org/10.1007/s002030000194
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s11099-018-0776-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100288127
209 https://doi.org/10.1007/s11099-018-0776-x
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s11120-005-9002-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008280966
212 https://doi.org/10.1007/s11120-005-9002-3
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s11120-007-9256-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006149518
215 https://doi.org/10.1007/s11120-007-9256-z
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/s11120-014-9981-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045208440
218 https://doi.org/10.1007/s11120-014-9981-z
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/s11120-015-0091-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019211762
221 https://doi.org/10.1007/s11120-015-0091-3
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s11120-017-0428-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091580709
224 https://doi.org/10.1007/s11120-017-0428-1
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/383402a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051777784
227 https://doi.org/10.1038/383402a0
228 rdf:type schema:CreativeWork
229 sg:pub.10.1134/s0006297916030020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001400187
230 https://doi.org/10.1134/s0006297916030020
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/b978-1-4832-3289-8.50010-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019200434
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.bbabio.2004.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022137236
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.bbabio.2007.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036003263
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.bbabio.2011.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024823296
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.bbabio.2012.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030972330
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.bbabio.2014.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027023252
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.bbabio.2015.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044157831
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.febslet.2012.06.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006216706
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.jphotobiol.2011.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036645515
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.jplph.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014920948
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.tplants.2005.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038643896
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.tplants.2011.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048738553
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/s0005-2728(02)00399-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012289571
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/s0005-2728(99)00048-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036703224
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/s0005-2728(99)00095-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048030596
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/s0006-3495(01)75709-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049220840
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/s0014-5793(03)01383-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035125164
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/s0014-5793(97)00631-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025058966
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1021/bi992659r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055218928
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1021/jp111306k schema:sameAs https://app.dimensions.ai/details/publication/pub.1056080871
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1021/jp980589c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056126847
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1021/ol400327j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056254236
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1039/b512350j schema:sameAs https://app.dimensions.ai/details/publication/pub.1026527694
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1073/pnas.0701847104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003420806
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1073/pnas.0913460107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047424275
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1073/pnas.1100173108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020976233
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1093/pcp/pcv122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059971956
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1117/12.689127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049572040
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1126/science.1191127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049092005
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1126/science.aaf9178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062667962
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1146/annurev-biochem-072711-162943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027988191
293 rdf:type schema:CreativeWork
294 https://doi.org/10.3389/fpls.2014.00067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015523535
295 rdf:type schema:CreativeWork
296 https://doi.org/10.3390/life5010004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050436856
297 rdf:type schema:CreativeWork
298 https://www.grid.ac/institutes/grid.1013.3 schema:alternateName University of Sydney
299 schema:name School of Life and Environmental Sciences, University of Sydney, 2006, Sydney, NSW, Australia
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.143643.7 schema:alternateName Tokyo University of Science
302 schema:name Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1–3, Shinjuku‑Ku, 162‑8601, Tokyo, Japan
303 rdf:type schema:Organization
304 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
305 schema:name Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskye Gory 1, bld. 24, 119991, Moscow, Russian Federation
306 rdf:type schema:Organization
307 https://www.grid.ac/institutes/grid.418820.7 schema:alternateName Institute of Basic Biological Problems
308 schema:name Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, 1073, Baku, Azerbaijan
309 Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russian Federation
310 Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russian Federation
311 Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russian Federation
312 Moscow Institute of Physics and Technology, Institutsky Lane 9, 141700, Dolgoprudny, Moscow Region, Russian Federation
313 rdf:type schema:Organization
314 https://www.grid.ac/institutes/grid.6734.6 schema:alternateName Technical University of Berlin
315 schema:name Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
316 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...