Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-12-16

AUTHORS

André Verméglio, Jérôme Lavergne, Fabrice Rappaport

ABSTRACT

The photosynthetic apparatus in the bacterium Rhodobacter sphaeroides is mostly present in intracytoplasmic membrane invaginations. It has long been debated whether these invaginations remain in topological continuity with the cytoplasmic membrane, or form isolated chromatophore vesicles. This issue is revisited here by functional approaches. The ionophore gramicidin was used as a probe of the relative size of the electro-osmotic units in isolated chromatophores, spheroplasts, or intact cells. The decay of the membrane potential was monitored from the electrochromic shift of carotenoids. The half-time of the decay induced by a single channel in intact cells was about 6 ms, thus three orders of magnitude slower than in isolated chromatophores. In spheroplasts obtained by lysis of the cell wall, the single channel decay was still slower (~23 ms) and the sensitivity toward the gramicidin concentration was enhanced 1,000-fold with respect to isolated chromatophores. These results indicate that the area of the functional membrane in cells or spheroplasts is about three orders of magnitude larger than that of isolated chromatophores. Intracytoplasmic vesicles, if present, could contribute to at most 10 % of the photosynthetic apparatus in intact cells of Rba. sphaeroides. Similar conclusions were obtained from the effect of a ∆pH-induced diffusion potential in intact cells. This caused a large electrochromic response of carotenoids, of similar amplitude as the light-induced change, indicating that most of the system is sensitive to a pH change of the external medium. A single internal membrane and periplasmic space may offer significant advantages concerning renewal of the photosynthetic apparatus and reallocation of the components shared with other bioenergetic pathways. More... »

PAGES

13-24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11120-014-0068-7

DOI

http://dx.doi.org/10.1007/s11120-014-0068-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010480974

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25512104


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Chromatophores", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotenoids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytoplasm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dose-Response Relationship, Drug", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gramicidin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen-Ion Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intracellular Membranes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ionophores", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rhodobacter sphaeroides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spheroplasts", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aix Marseille Universit\u00e9, BVME UMR7265, 13284, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "CEA, IBEB, Laboratoire de Bio\u00e9nerg\u00e9tique Cellulaire, 13108, Saint-Paul-Lez-Durance, France", 
            "CNRS, UMR 7265 Biol Veget & Microbiol Environ, 13108, Saint-Paul-Lez-Durance, France", 
            "Aix Marseille Universit\u00e9, BVME UMR7265, 13284, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verm\u00e9glio", 
        "givenName": "Andr\u00e9", 
        "id": "sg:person.01207002310.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207002310.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aix Marseille Universit\u00e9, BVME UMR7265, 13284, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "CEA, IBEB, Laboratoire de Bio\u00e9nerg\u00e9tique Cellulaire, 13108, Saint-Paul-Lez-Durance, France", 
            "CNRS, UMR 7265 Biol Veget & Microbiol Environ, 13108, Saint-Paul-Lez-Durance, France", 
            "Aix Marseille Universit\u00e9, BVME UMR7265, 13284, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavergne", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.01220626200.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220626200.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13, rue Pierre et Marie Curie, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.450875.b", 
          "name": [
            "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13, rue Pierre et Marie Curie, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaport", 
        "givenName": "Fabrice", 
        "id": "sg:person.01103560265.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00446455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028127458", 
          "https://doi.org/10.1007/bf00446455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-6368-4_101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005812356", 
          "https://doi.org/10.1007/978-94-017-6368-4_101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012845270", 
          "https://doi.org/10.1007/bf00250276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/169282a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013377041", 
          "https://doi.org/10.1038/169282a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00196347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026822412", 
          "https://doi.org/10.1007/bf00196347"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12-16", 
    "datePublishedReg": "2014-12-16", 
    "description": "Abstract\nThe photosynthetic apparatus in the bacterium Rhodobacter sphaeroides is mostly present in intracytoplasmic membrane invaginations. It has long been debated whether these invaginations remain in topological continuity with the cytoplasmic membrane, or form isolated chromatophore vesicles. This issue is revisited here by functional approaches. The ionophore gramicidin was used as a probe of the relative size of the electro-osmotic units in isolated chromatophores, spheroplasts, or intact cells. The decay of the membrane potential was monitored from the electrochromic shift of carotenoids. The half-time of the decay induced by a single channel in intact cells was about 6\u00a0ms, thus three orders of magnitude slower than in isolated chromatophores. In spheroplasts obtained by lysis of the cell wall, the single channel decay was still slower (~23\u00a0ms) and the sensitivity toward the gramicidin concentration was enhanced 1,000-fold with respect to isolated chromatophores. These results indicate that the area of the functional membrane in cells or spheroplasts is about three orders of magnitude larger than that of isolated chromatophores. Intracytoplasmic vesicles, if present, could contribute to at most 10\u00a0% of the photosynthetic apparatus in intact cells of Rba. sphaeroides. Similar conclusions were obtained from the effect of a \u2206pH-induced diffusion potential in intact cells. This caused a large electrochromic response of carotenoids, of similar amplitude as the light-induced change, indicating that most of the system is sensitive to a pH change of the external medium. A single internal membrane and periplasmic space may offer significant advantages concerning renewal of the photosynthetic apparatus and reallocation of the components shared with other bioenergetic pathways.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11120-014-0068-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022986", 
        "issn": [
          "0166-8595", 
          "1573-5079"
        ], 
        "name": "Photosynthesis Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "keywords": [
      "photosynthetic apparatus", 
      "intact cells", 
      "Rhodobacter sphaeroides", 
      "bacterium Rhodobacter sphaeroides", 
      "periplasmic space", 
      "cytoplasmic membrane", 
      "membrane invaginations", 
      "bioenergetic pathways", 
      "intracytoplasmic membranes", 
      "chromatophore vesicles", 
      "cell wall", 
      "internal membranes", 
      "light-induced changes", 
      "spheroplasts", 
      "intracytoplasmic vesicles", 
      "membrane potential", 
      "chromatophores", 
      "external medium", 
      "membrane", 
      "ionophore gramicidin", 
      "sphaeroides", 
      "vesicles", 
      "cells", 
      "invagination", 
      "electrochromic shift", 
      "gramicidin concentration", 
      "carotenoids", 
      "functional membranes", 
      "functional approach", 
      "topological continuity", 
      "diffusion potential", 
      "pathway", 
      "relative size", 
      "pH changes", 
      "apparatus", 
      "lysis", 
      "gramicidin", 
      "orders of magnitude", 
      "probe", 
      "potential", 
      "changes", 
      "RBA", 
      "response", 
      "channel decay", 
      "renewal", 
      "components", 
      "medium", 
      "similar conclusions", 
      "wall", 
      "form", 
      "single channel", 
      "shift", 
      "connectivity", 
      "decay", 
      "size", 
      "reallocation", 
      "channels", 
      "concentration", 
      "sensitivity", 
      "effect", 
      "approach", 
      "area", 
      "results", 
      "magnitude", 
      "order", 
      "system", 
      "respect", 
      "units", 
      "similar amplitude", 
      "significant advantages", 
      "electrochromic response", 
      "conclusion", 
      "advantages", 
      "space", 
      "continuity", 
      "issues", 
      "ms", 
      "amplitude", 
      "intracytoplasmic membrane invaginations", 
      "electro-osmotic units", 
      "single channel decay", 
      "large electrochromic response", 
      "single internal membrane"
    ], 
    "name": "Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach", 
    "pagination": "13-24", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010480974"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11120-014-0068-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25512104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11120-014-0068-7", 
      "https://app.dimensions.ai/details/publication/pub.1010480974"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_618.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11120-014-0068-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11120-014-0068-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11120-014-0068-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11120-014-0068-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11120-014-0068-7'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      22 PREDICATES      125 URIs      112 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11120-014-0068-7 schema:about N17226714f6a74a5e99ee22a86ccb0020
2 N18c43d373f904aa099ce29635f3fe6f2
3 N1a88e2a0c80e47c99dd7186bcc673799
4 N2033b42dc15540ec886a159a7595ba40
5 N2e4499c5903b455391d41102216aaba8
6 N4079a92a163a48ed8f770dc5d8bd8486
7 N730b28e244d24057af33f7465e7f4fc3
8 N7d8317f3576549ecb14171607981be90
9 N88ad611196b14aa28ebd3b72d62daca9
10 N95a9dc447f054e249adb8783decec994
11 Ne44125134ec34020b8482a79547a7c5c
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author Naac794d75749452b949a44cf8f54f899
15 schema:citation sg:pub.10.1007/978-94-017-6368-4_101
16 sg:pub.10.1007/bf00196347
17 sg:pub.10.1007/bf00250276
18 sg:pub.10.1007/bf00446455
19 sg:pub.10.1038/169282a0
20 schema:datePublished 2014-12-16
21 schema:datePublishedReg 2014-12-16
22 schema:description Abstract The photosynthetic apparatus in the bacterium Rhodobacter sphaeroides is mostly present in intracytoplasmic membrane invaginations. It has long been debated whether these invaginations remain in topological continuity with the cytoplasmic membrane, or form isolated chromatophore vesicles. This issue is revisited here by functional approaches. The ionophore gramicidin was used as a probe of the relative size of the electro-osmotic units in isolated chromatophores, spheroplasts, or intact cells. The decay of the membrane potential was monitored from the electrochromic shift of carotenoids. The half-time of the decay induced by a single channel in intact cells was about 6 ms, thus three orders of magnitude slower than in isolated chromatophores. In spheroplasts obtained by lysis of the cell wall, the single channel decay was still slower (~23 ms) and the sensitivity toward the gramicidin concentration was enhanced 1,000-fold with respect to isolated chromatophores. These results indicate that the area of the functional membrane in cells or spheroplasts is about three orders of magnitude larger than that of isolated chromatophores. Intracytoplasmic vesicles, if present, could contribute to at most 10 % of the photosynthetic apparatus in intact cells of Rba. sphaeroides. Similar conclusions were obtained from the effect of a ∆pH-induced diffusion potential in intact cells. This caused a large electrochromic response of carotenoids, of similar amplitude as the light-induced change, indicating that most of the system is sensitive to a pH change of the external medium. A single internal membrane and periplasmic space may offer significant advantages concerning renewal of the photosynthetic apparatus and reallocation of the components shared with other bioenergetic pathways.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N80921edba98b4443a75505265f64e712
27 Ne39ea8d51511455dadf9e794698a8c84
28 sg:journal.1022986
29 schema:keywords RBA
30 Rhodobacter sphaeroides
31 advantages
32 amplitude
33 apparatus
34 approach
35 area
36 bacterium Rhodobacter sphaeroides
37 bioenergetic pathways
38 carotenoids
39 cell wall
40 cells
41 changes
42 channel decay
43 channels
44 chromatophore vesicles
45 chromatophores
46 components
47 concentration
48 conclusion
49 connectivity
50 continuity
51 cytoplasmic membrane
52 decay
53 diffusion potential
54 effect
55 electro-osmotic units
56 electrochromic response
57 electrochromic shift
58 external medium
59 form
60 functional approach
61 functional membranes
62 gramicidin
63 gramicidin concentration
64 intact cells
65 internal membranes
66 intracytoplasmic membrane invaginations
67 intracytoplasmic membranes
68 intracytoplasmic vesicles
69 invagination
70 ionophore gramicidin
71 issues
72 large electrochromic response
73 light-induced changes
74 lysis
75 magnitude
76 medium
77 membrane
78 membrane invaginations
79 membrane potential
80 ms
81 order
82 orders of magnitude
83 pH changes
84 pathway
85 periplasmic space
86 photosynthetic apparatus
87 potential
88 probe
89 reallocation
90 relative size
91 renewal
92 respect
93 response
94 results
95 sensitivity
96 shift
97 significant advantages
98 similar amplitude
99 similar conclusions
100 single channel
101 single channel decay
102 single internal membrane
103 size
104 space
105 sphaeroides
106 spheroplasts
107 system
108 topological continuity
109 units
110 vesicles
111 wall
112 schema:name Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach
113 schema:pagination 13-24
114 schema:productId N330fa1eaa2074367b4e76532d7b78d1d
115 N3bd6111960fb449dbae86f64794706d6
116 Nd2fa58e506b1490d8a85084f0b5a9000
117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010480974
118 https://doi.org/10.1007/s11120-014-0068-7
119 schema:sdDatePublished 2022-01-01T18:32
120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
121 schema:sdPublisher N539da7f7a22145768195f1ee8bc80364
122 schema:url https://doi.org/10.1007/s11120-014-0068-7
123 sgo:license sg:explorer/license/
124 sgo:sdDataset articles
125 rdf:type schema:ScholarlyArticle
126 N17226714f6a74a5e99ee22a86ccb0020 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Dose-Response Relationship, Drug
128 rdf:type schema:DefinedTerm
129 N18c43d373f904aa099ce29635f3fe6f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Cytoplasm
131 rdf:type schema:DefinedTerm
132 N1a88e2a0c80e47c99dd7186bcc673799 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Gramicidin
134 rdf:type schema:DefinedTerm
135 N2033b42dc15540ec886a159a7595ba40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Photosynthesis
137 rdf:type schema:DefinedTerm
138 N2e4499c5903b455391d41102216aaba8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Intracellular Membranes
140 rdf:type schema:DefinedTerm
141 N330fa1eaa2074367b4e76532d7b78d1d schema:name dimensions_id
142 schema:value pub.1010480974
143 rdf:type schema:PropertyValue
144 N3bd6111960fb449dbae86f64794706d6 schema:name doi
145 schema:value 10.1007/s11120-014-0068-7
146 rdf:type schema:PropertyValue
147 N4079a92a163a48ed8f770dc5d8bd8486 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Hydrogen-Ion Concentration
149 rdf:type schema:DefinedTerm
150 N539da7f7a22145768195f1ee8bc80364 schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 N730b28e244d24057af33f7465e7f4fc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Carotenoids
154 rdf:type schema:DefinedTerm
155 N7d8317f3576549ecb14171607981be90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Bacterial Chromatophores
157 rdf:type schema:DefinedTerm
158 N80921edba98b4443a75505265f64e712 schema:issueNumber 1
159 rdf:type schema:PublicationIssue
160 N88ad611196b14aa28ebd3b72d62daca9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Ionophores
162 rdf:type schema:DefinedTerm
163 N95a9dc447f054e249adb8783decec994 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Spheroplasts
165 rdf:type schema:DefinedTerm
166 Na8d8d795476244db896a1fe3268bc94e rdf:first sg:person.01103560265.56
167 rdf:rest rdf:nil
168 Naac794d75749452b949a44cf8f54f899 rdf:first sg:person.01207002310.01
169 rdf:rest Nd58a05fdae2643e796067baa1cb7944f
170 Nd2fa58e506b1490d8a85084f0b5a9000 schema:name pubmed_id
171 schema:value 25512104
172 rdf:type schema:PropertyValue
173 Nd58a05fdae2643e796067baa1cb7944f rdf:first sg:person.01220626200.72
174 rdf:rest Na8d8d795476244db896a1fe3268bc94e
175 Ne39ea8d51511455dadf9e794698a8c84 schema:volumeNumber 127
176 rdf:type schema:PublicationVolume
177 Ne44125134ec34020b8482a79547a7c5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Rhodobacter sphaeroides
179 rdf:type schema:DefinedTerm
180 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
181 schema:name Biological Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
184 schema:name Biochemistry and Cell Biology
185 rdf:type schema:DefinedTerm
186 sg:journal.1022986 schema:issn 0166-8595
187 1573-5079
188 schema:name Photosynthesis Research
189 schema:publisher Springer Nature
190 rdf:type schema:Periodical
191 sg:person.01103560265.56 schema:affiliation grid-institutes:grid.450875.b
192 schema:familyName Rappaport
193 schema:givenName Fabrice
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56
195 rdf:type schema:Person
196 sg:person.01207002310.01 schema:affiliation grid-institutes:grid.5399.6
197 schema:familyName Verméglio
198 schema:givenName André
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207002310.01
200 rdf:type schema:Person
201 sg:person.01220626200.72 schema:affiliation grid-institutes:grid.5399.6
202 schema:familyName Lavergne
203 schema:givenName Jérôme
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220626200.72
205 rdf:type schema:Person
206 sg:pub.10.1007/978-94-017-6368-4_101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005812356
207 https://doi.org/10.1007/978-94-017-6368-4_101
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/bf00196347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026822412
210 https://doi.org/10.1007/bf00196347
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/bf00250276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012845270
213 https://doi.org/10.1007/bf00250276
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/bf00446455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028127458
216 https://doi.org/10.1007/bf00446455
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/169282a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013377041
219 https://doi.org/10.1038/169282a0
220 rdf:type schema:CreativeWork
221 grid-institutes:grid.450875.b schema:alternateName Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13, rue Pierre et Marie Curie, 75005, Paris, France
222 schema:name Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13, rue Pierre et Marie Curie, 75005, Paris, France
223 rdf:type schema:Organization
224 grid-institutes:grid.5399.6 schema:alternateName Aix Marseille Université, BVME UMR7265, 13284, Marseille, France
225 schema:name Aix Marseille Université, BVME UMR7265, 13284, Marseille, France
226 CEA, IBEB, Laboratoire de Bioénergétique Cellulaire, 13108, Saint-Paul-Lez-Durance, France
227 CNRS, UMR 7265 Biol Veget & Microbiol Environ, 13108, Saint-Paul-Lez-Durance, France
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...