Modulation of the fluorescence yield in heliobacterial cells by induction of charge recombination in the photosynthetic reaction center View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12-07

AUTHORS

Kevin E. Redding, Iosifina Sarrou, Fabrice Rappaport, Stefano Santabarbara, Su Lin, Kiera T. Reifschneider

ABSTRACT

Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800+A0− with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800+A0−, some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence. More... »

PAGES

221-235

References to SciGraph publications

  • 2012-03-02. Purification of the photosynthetic reaction center from Heliobacterium modesticaldum in PHOTOSYNTHESIS RESEARCH
  • 2010-05-26. Identification and characterization of PshBII, a second FA/FB-containing polypeptide in the photosynthetic reaction center of Heliobacterium modesticaldum in PHOTOSYNTHESIS RESEARCH
  • 2013-06-30. Temporal and spectral characterization of the photosynthetic reaction center from Heliobacterium modesticaldum in PHOTOSYNTHESIS RESEARCH
  • 1989-03. Occurrence of menaquinone as the sole isoprenoid quinone in the photosynthetic bacterium Heliobacterium chlorum in ARCHIVES OF MICROBIOLOGY
  • 1999-09. Photochemical and Thermal Phases of Chlorophyll a Fluorescence in PHOTOSYNTHETICA
  • 2006. Optical Measurements of Secondary Electron Transfer in Photosystem I in PHOTOSYSTEM I
  • 2002-02. Electron donation from membrane-bound cytochrome c to the photosynthetic reaction center in whole cells and isolated membranes of Heliobacterium gestii in PHOTOSYNTHESIS RESEARCH
  • 2012-02-02. The FX iron–sulfur cluster serves as the terminal bound electron acceptor in heliobacterial reaction centers in PHOTOSYNTHESIS RESEARCH
  • 2010-05-12. Modulation of fluorescence in Heliobacterium modesticaldum cells in PHOTOSYNTHESIS RESEARCH
  • 2004-01-01. The Antenna-Reaction Center Complex of Heliobacteria in ANOXYGENIC PHOTOSYNTHETIC BACTERIA
  • 2009-01-13. Breaking biological symmetry in membrane proteins: The asymmetrical orientation of PsaC on the pseudo-C2 symmetric Photosystem I core in CELLULAR AND MOLECULAR LIFE SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11120-013-9957-4

    DOI

    http://dx.doi.org/10.1007/s11120-013-9957-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022940263

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24318506


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gram-Positive Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photosynthesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photosynthetic Reaction Center Complex Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.450875.b", 
              "name": [
                "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA", 
                "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Redding", 
            "givenName": "Kevin E.", 
            "id": "sg:person.01272503314.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272503314.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sarrou", 
            "givenName": "Iosifina", 
            "id": "sg:person.01066667537.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066667537.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.450875.b", 
              "name": [
                "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaport", 
            "givenName": "Fabrice", 
            "id": "sg:person.01103560265.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biophysics, Consiglio Nazionale delle Richerche, Via G. Celoria 26, 20133, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5326.2", 
              "name": [
                "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA", 
                "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France", 
                "Institute of Biophysics, Consiglio Nazionale delle Richerche, Via G. Celoria 26, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Santabarbara", 
            "givenName": "Stefano", 
            "id": "sg:person.01111234443.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111234443.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Su", 
            "id": "sg:person.010640104654.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640104654.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reifschneider", 
            "givenName": "Kiera T.", 
            "id": "sg:person.0745463335.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745463335.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1014911832504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046605050", 
              "https://doi.org/10.1023/a:1014911832504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-012-9723-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030968403", 
              "https://doi.org/10.1007/s11120-012-9723-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-4256-0_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036589238", 
              "https://doi.org/10.1007/978-1-4020-4256-0_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007095619317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025013912", 
              "https://doi.org/10.1023/a:1007095619317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-012-9726-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049636598", 
              "https://doi.org/10.1007/s11120-012-9726-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-013-9871-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047180540", 
              "https://doi.org/10.1007/s11120-013-9871-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-306-47954-0_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017725803", 
              "https://doi.org/10.1007/0-306-47954-0_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-009-8673-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003086200", 
              "https://doi.org/10.1007/s00018-009-8673-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00406568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026584044", 
              "https://doi.org/10.1007/bf00406568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-010-9554-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038494415", 
              "https://doi.org/10.1007/s11120-010-9554-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-010-9558-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025073404", 
              "https://doi.org/10.1007/s11120-010-9558-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-12-07", 
        "datePublishedReg": "2013-12-07", 
        "description": "Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800+A0\u2212 with a time constant of ~20\u00a0ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800+A0\u2212, some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6\u00a0% of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11120-013-9957-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1022986", 
            "issn": [
              "0166-8595", 
              "1573-5079"
            ], 
            "name": "Photosynthesis Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "120"
          }
        ], 
        "keywords": [
          "decay component", 
          "reaction centers", 
          "pump-probe spectroscopy", 
          "charge recombination", 
          "variable fluorescence", 
          "singlet excited state", 
          "ns decay component", 
          "fraction of RCs", 
          "homodimeric type I reaction center", 
          "time-resolved fluorescence studies", 
          "photosynthetic reaction centers", 
          "excited states", 
          "RC state", 
          "major decay component", 
          "nanosecond timescale", 
          "decay time", 
          "fluorescence phenomenon", 
          "ns timescale", 
          "fluorescence yield", 
          "peripheral antenna system", 
          "actinic light", 
          "Delayed Fluorescence", 
          "cyclic electron transport pathway", 
          "heliobacterial reaction center", 
          "type I reaction center", 
          "strong illumination", 
          "fluorescence emission", 
          "electron acceptor pool", 
          "primary donor", 
          "significant fraction", 
          "fluorescence studies", 
          "acceptor side", 
          "fluorescence", 
          "illumination", 
          "timescales", 
          "recombination", 
          "light", 
          "electron transport pathways", 
          "state", 
          "protons", 
          "PS", 
          "spectroscopy", 
          "illumination of cells", 
          "decay", 
          "emission", 
          "ns", 
          "flashes", 
          "photosynthetic apparatus", 
          "modulation", 
          "phenomenon", 
          "fraction", 
          "brief flashes", 
          "antenna system", 
          "center", 
          "detail", 
          "seconds", 
          "apparatus", 
          "heliobacteria", 
          "components", 
          "saturation", 
          "time", 
          "yield", 
          "system", 
          "bright light", 
          "rise", 
          "creation", 
          "appearance", 
          "side", 
          "different characteristics", 
          "mechanism", 
          "oxygenic phototrophs", 
          "characteristics", 
          "transport pathways", 
          "whole cells", 
          "P800", 
          "increase", 
          "donors", 
          "underlying mechanism", 
          "G.", 
          "cells", 
          "treatment of cells", 
          "study", 
          "dithionite", 
          "reduction", 
          "phosphorylate ADP", 
          "cycle", 
          "untreated cells", 
          "ability", 
          "exposure", 
          "phototrophs", 
          "pathway", 
          "ADP", 
          "vivo", 
          "pool", 
          "induction", 
          "hypothesis", 
          "treatment", 
          "simple photosynthetic apparatus", 
          "I reaction center", 
          "unique pigment bacteriochlorophyll (BChl) g.", 
          "pigment bacteriochlorophyll (BChl) g.", 
          "bacteriochlorophyll (BChl) g.", 
          "light-driven cyclic electron transport pathway", 
          "variable fluorescence phenomenon", 
          "heliobacterial cells", 
          "acceptor pool"
        ], 
        "name": "Modulation of the fluorescence yield in heliobacterial cells by induction of charge recombination in the photosynthetic reaction center", 
        "pagination": "221-235", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022940263"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11120-013-9957-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24318506"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11120-013-9957-4", 
          "https://app.dimensions.ai/details/publication/pub.1022940263"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_595.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11120-013-9957-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11120-013-9957-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11120-013-9957-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11120-013-9957-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11120-013-9957-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    284 TRIPLES      22 PREDICATES      150 URIs      129 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11120-013-9957-4 schema:about N6d4255ddd0ef4776992544da6aca513f
    2 N85e01ef7c4d84e0f8e3ff1e71dc6101a
    3 Na67f0dc5008347dbb2dce18e2ddc366b
    4 Ndcc2f5bace2e4008924fb17d5f1b332e
    5 Nec3355e2a22b4cef927391724d7a9c24
    6 anzsrc-for:06
    7 anzsrc-for:0601
    8 anzsrc-for:0604
    9 anzsrc-for:0607
    10 schema:author Nbe3efded17ff4faabe0ef41e21247e0d
    11 schema:citation sg:pub.10.1007/0-306-47954-0_31
    12 sg:pub.10.1007/978-1-4020-4256-0_16
    13 sg:pub.10.1007/bf00406568
    14 sg:pub.10.1007/s00018-009-8673-x
    15 sg:pub.10.1007/s11120-010-9554-8
    16 sg:pub.10.1007/s11120-010-9558-4
    17 sg:pub.10.1007/s11120-012-9723-z
    18 sg:pub.10.1007/s11120-012-9726-9
    19 sg:pub.10.1007/s11120-013-9871-9
    20 sg:pub.10.1023/a:1007095619317
    21 sg:pub.10.1023/a:1014911832504
    22 schema:datePublished 2013-12-07
    23 schema:datePublishedReg 2013-12-07
    24 schema:description Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800+A0− with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800+A0−, some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence.
    25 schema:genre article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N38b0c3626e75478fa84286f2ab234277
    29 N4d2656c072b54a90a7853dd51c0aea91
    30 sg:journal.1022986
    31 schema:keywords ADP
    32 Delayed Fluorescence
    33 G.
    34 I reaction center
    35 P800
    36 PS
    37 RC state
    38 ability
    39 acceptor pool
    40 acceptor side
    41 actinic light
    42 antenna system
    43 apparatus
    44 appearance
    45 bacteriochlorophyll (BChl) g.
    46 brief flashes
    47 bright light
    48 cells
    49 center
    50 characteristics
    51 charge recombination
    52 components
    53 creation
    54 cycle
    55 cyclic electron transport pathway
    56 decay
    57 decay component
    58 decay time
    59 detail
    60 different characteristics
    61 dithionite
    62 donors
    63 electron acceptor pool
    64 electron transport pathways
    65 emission
    66 excited states
    67 exposure
    68 flashes
    69 fluorescence
    70 fluorescence emission
    71 fluorescence phenomenon
    72 fluorescence studies
    73 fluorescence yield
    74 fraction
    75 fraction of RCs
    76 heliobacteria
    77 heliobacterial cells
    78 heliobacterial reaction center
    79 homodimeric type I reaction center
    80 hypothesis
    81 illumination
    82 illumination of cells
    83 increase
    84 induction
    85 light
    86 light-driven cyclic electron transport pathway
    87 major decay component
    88 mechanism
    89 modulation
    90 nanosecond timescale
    91 ns
    92 ns decay component
    93 ns timescale
    94 oxygenic phototrophs
    95 pathway
    96 peripheral antenna system
    97 phenomenon
    98 phosphorylate ADP
    99 photosynthetic apparatus
    100 photosynthetic reaction centers
    101 phototrophs
    102 pigment bacteriochlorophyll (BChl) g.
    103 pool
    104 primary donor
    105 protons
    106 pump-probe spectroscopy
    107 reaction centers
    108 recombination
    109 reduction
    110 rise
    111 saturation
    112 seconds
    113 side
    114 significant fraction
    115 simple photosynthetic apparatus
    116 singlet excited state
    117 spectroscopy
    118 state
    119 strong illumination
    120 study
    121 system
    122 time
    123 time-resolved fluorescence studies
    124 timescales
    125 transport pathways
    126 treatment
    127 treatment of cells
    128 type I reaction center
    129 underlying mechanism
    130 unique pigment bacteriochlorophyll (BChl) g.
    131 untreated cells
    132 variable fluorescence
    133 variable fluorescence phenomenon
    134 vivo
    135 whole cells
    136 yield
    137 schema:name Modulation of the fluorescence yield in heliobacterial cells by induction of charge recombination in the photosynthetic reaction center
    138 schema:pagination 221-235
    139 schema:productId N02876d71fdc94925b5599d737e3ff07c
    140 N2faadf6d3eee492cac2d36b9051e71c5
    141 N3711acceb75e4480afb8565ec3eef3c2
    142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022940263
    143 https://doi.org/10.1007/s11120-013-9957-4
    144 schema:sdDatePublished 2022-01-01T18:29
    145 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    146 schema:sdPublisher N776302059de943cbaeba8e4a3585afce
    147 schema:url https://doi.org/10.1007/s11120-013-9957-4
    148 sgo:license sg:explorer/license/
    149 sgo:sdDataset articles
    150 rdf:type schema:ScholarlyArticle
    151 N02876d71fdc94925b5599d737e3ff07c schema:name dimensions_id
    152 schema:value pub.1022940263
    153 rdf:type schema:PropertyValue
    154 N2affa84e4dfc494bb8e2fc60955668a6 rdf:first sg:person.01103560265.56
    155 rdf:rest N3f169f826ff74b8eabe4025d60a7f850
    156 N2ece495f3d2146f489d24d91c2711f2d rdf:first sg:person.01066667537.69
    157 rdf:rest N2affa84e4dfc494bb8e2fc60955668a6
    158 N2faadf6d3eee492cac2d36b9051e71c5 schema:name pubmed_id
    159 schema:value 24318506
    160 rdf:type schema:PropertyValue
    161 N3711acceb75e4480afb8565ec3eef3c2 schema:name doi
    162 schema:value 10.1007/s11120-013-9957-4
    163 rdf:type schema:PropertyValue
    164 N38b0c3626e75478fa84286f2ab234277 schema:issueNumber 1-2
    165 rdf:type schema:PublicationIssue
    166 N39523ae890b04a50a0c405c9dc0ac190 rdf:first sg:person.010640104654.00
    167 rdf:rest N89905e75d7b04c259264867e281fae24
    168 N3f169f826ff74b8eabe4025d60a7f850 rdf:first sg:person.01111234443.75
    169 rdf:rest N39523ae890b04a50a0c405c9dc0ac190
    170 N4d2656c072b54a90a7853dd51c0aea91 schema:volumeNumber 120
    171 rdf:type schema:PublicationVolume
    172 N6d4255ddd0ef4776992544da6aca513f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Gram-Positive Bacteria
    174 rdf:type schema:DefinedTerm
    175 N776302059de943cbaeba8e4a3585afce schema:name Springer Nature - SN SciGraph project
    176 rdf:type schema:Organization
    177 N85e01ef7c4d84e0f8e3ff1e71dc6101a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Photosynthetic Reaction Center Complex Proteins
    179 rdf:type schema:DefinedTerm
    180 N89905e75d7b04c259264867e281fae24 rdf:first sg:person.0745463335.83
    181 rdf:rest rdf:nil
    182 Na67f0dc5008347dbb2dce18e2ddc366b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Fluorescence
    184 rdf:type schema:DefinedTerm
    185 Nbe3efded17ff4faabe0ef41e21247e0d rdf:first sg:person.01272503314.34
    186 rdf:rest N2ece495f3d2146f489d24d91c2711f2d
    187 Ndcc2f5bace2e4008924fb17d5f1b332e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Photosynthesis
    189 rdf:type schema:DefinedTerm
    190 Nec3355e2a22b4cef927391724d7a9c24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Bacterial Proteins
    192 rdf:type schema:DefinedTerm
    193 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    194 schema:name Biological Sciences
    195 rdf:type schema:DefinedTerm
    196 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    197 schema:name Biochemistry and Cell Biology
    198 rdf:type schema:DefinedTerm
    199 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    200 schema:name Genetics
    201 rdf:type schema:DefinedTerm
    202 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    203 schema:name Plant Biology
    204 rdf:type schema:DefinedTerm
    205 sg:journal.1022986 schema:issn 0166-8595
    206 1573-5079
    207 schema:name Photosynthesis Research
    208 schema:publisher Springer Nature
    209 rdf:type schema:Periodical
    210 sg:person.010640104654.00 schema:affiliation grid-institutes:grid.215654.1
    211 schema:familyName Lin
    212 schema:givenName Su
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640104654.00
    214 rdf:type schema:Person
    215 sg:person.01066667537.69 schema:affiliation grid-institutes:grid.215654.1
    216 schema:familyName Sarrou
    217 schema:givenName Iosifina
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066667537.69
    219 rdf:type schema:Person
    220 sg:person.01103560265.56 schema:affiliation grid-institutes:grid.450875.b
    221 schema:familyName Rappaport
    222 schema:givenName Fabrice
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56
    224 rdf:type schema:Person
    225 sg:person.01111234443.75 schema:affiliation grid-institutes:grid.5326.2
    226 schema:familyName Santabarbara
    227 schema:givenName Stefano
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111234443.75
    229 rdf:type schema:Person
    230 sg:person.01272503314.34 schema:affiliation grid-institutes:grid.450875.b
    231 schema:familyName Redding
    232 schema:givenName Kevin E.
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272503314.34
    234 rdf:type schema:Person
    235 sg:person.0745463335.83 schema:affiliation grid-institutes:grid.215654.1
    236 schema:familyName Reifschneider
    237 schema:givenName Kiera T.
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745463335.83
    239 rdf:type schema:Person
    240 sg:pub.10.1007/0-306-47954-0_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017725803
    241 https://doi.org/10.1007/0-306-47954-0_31
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/978-1-4020-4256-0_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036589238
    244 https://doi.org/10.1007/978-1-4020-4256-0_16
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/bf00406568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026584044
    247 https://doi.org/10.1007/bf00406568
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s00018-009-8673-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003086200
    250 https://doi.org/10.1007/s00018-009-8673-x
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s11120-010-9554-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038494415
    253 https://doi.org/10.1007/s11120-010-9554-8
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s11120-010-9558-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025073404
    256 https://doi.org/10.1007/s11120-010-9558-4
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s11120-012-9723-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030968403
    259 https://doi.org/10.1007/s11120-012-9723-z
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s11120-012-9726-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049636598
    262 https://doi.org/10.1007/s11120-012-9726-9
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/s11120-013-9871-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047180540
    265 https://doi.org/10.1007/s11120-013-9871-9
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1023/a:1007095619317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025013912
    268 https://doi.org/10.1023/a:1007095619317
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1023/a:1014911832504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046605050
    271 https://doi.org/10.1023/a:1014911832504
    272 rdf:type schema:CreativeWork
    273 grid-institutes:grid.215654.1 schema:alternateName Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA
    274 schema:name Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA
    275 rdf:type schema:Organization
    276 grid-institutes:grid.450875.b schema:alternateName Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France
    277 schema:name Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA
    278 Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France
    279 rdf:type schema:Organization
    280 grid-institutes:grid.5326.2 schema:alternateName Institute of Biophysics, Consiglio Nazionale delle Richerche, Via G. Celoria 26, 20133, Milan, Italy
    281 schema:name Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA
    282 Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France
    283 Institute of Biophysics, Consiglio Nazionale delle Richerche, Via G. Celoria 26, 20133, Milan, Italy
    284 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...