Modulation of the fluorescence yield in heliobacterial cells by induction of charge recombination in the photosynthetic reaction center View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12-07

AUTHORS

Kevin E. Redding, Iosifina Sarrou, Fabrice Rappaport, Stefano Santabarbara, Su Lin, Kiera T. Reifschneider

ABSTRACT

Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800+A0− with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800+A0−, some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence. More... »

PAGES

221-235

References to SciGraph publications

  • 2012-03-02. Purification of the photosynthetic reaction center from Heliobacterium modesticaldum in PHOTOSYNTHESIS RESEARCH
  • 2010-05-26. Identification and characterization of PshBII, a second FA/FB-containing polypeptide in the photosynthetic reaction center of Heliobacterium modesticaldum in PHOTOSYNTHESIS RESEARCH
  • 2013-06-30. Temporal and spectral characterization of the photosynthetic reaction center from Heliobacterium modesticaldum in PHOTOSYNTHESIS RESEARCH
  • 1989-03. Occurrence of menaquinone as the sole isoprenoid quinone in the photosynthetic bacterium Heliobacterium chlorum in ARCHIVES OF MICROBIOLOGY
  • 1999-09. Photochemical and Thermal Phases of Chlorophyll a Fluorescence in PHOTOSYNTHETICA
  • 2006. Optical Measurements of Secondary Electron Transfer in Photosystem I in PHOTOSYSTEM I
  • 2002-02. Electron donation from membrane-bound cytochrome c to the photosynthetic reaction center in whole cells and isolated membranes of Heliobacterium gestii in PHOTOSYNTHESIS RESEARCH
  • 2012-02-02. The FX iron–sulfur cluster serves as the terminal bound electron acceptor in heliobacterial reaction centers in PHOTOSYNTHESIS RESEARCH
  • 2010-05-12. Modulation of fluorescence in Heliobacterium modesticaldum cells in PHOTOSYNTHESIS RESEARCH
  • 2004-01-01. The Antenna-Reaction Center Complex of Heliobacteria in ANOXYGENIC PHOTOSYNTHETIC BACTERIA
  • 2009-01-13. Breaking biological symmetry in membrane proteins: The asymmetrical orientation of PsaC on the pseudo-C2 symmetric Photosystem I core in CELLULAR AND MOLECULAR LIFE SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11120-013-9957-4

    DOI

    http://dx.doi.org/10.1007/s11120-013-9957-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022940263

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24318506


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gram-Positive Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photosynthesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photosynthetic Reaction Center Complex Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.450875.b", 
              "name": [
                "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA", 
                "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Redding", 
            "givenName": "Kevin E.", 
            "id": "sg:person.01272503314.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272503314.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sarrou", 
            "givenName": "Iosifina", 
            "id": "sg:person.01066667537.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066667537.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.450875.b", 
              "name": [
                "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaport", 
            "givenName": "Fabrice", 
            "id": "sg:person.01103560265.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biophysics, Consiglio Nazionale delle Richerche, Via G. Celoria 26, 20133, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5326.2", 
              "name": [
                "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA", 
                "Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France", 
                "Institute of Biophysics, Consiglio Nazionale delle Richerche, Via G. Celoria 26, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Santabarbara", 
            "givenName": "Stefano", 
            "id": "sg:person.01111234443.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111234443.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Su", 
            "id": "sg:person.010640104654.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640104654.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reifschneider", 
            "givenName": "Kiera T.", 
            "id": "sg:person.0745463335.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745463335.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11120-010-9554-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038494415", 
              "https://doi.org/10.1007/s11120-010-9554-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-4256-0_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036589238", 
              "https://doi.org/10.1007/978-1-4020-4256-0_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007095619317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025013912", 
              "https://doi.org/10.1023/a:1007095619317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014911832504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046605050", 
              "https://doi.org/10.1023/a:1014911832504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-010-9558-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025073404", 
              "https://doi.org/10.1007/s11120-010-9558-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00406568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026584044", 
              "https://doi.org/10.1007/bf00406568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-306-47954-0_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017725803", 
              "https://doi.org/10.1007/0-306-47954-0_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-013-9871-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047180540", 
              "https://doi.org/10.1007/s11120-013-9871-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-012-9723-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030968403", 
              "https://doi.org/10.1007/s11120-012-9723-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-012-9726-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049636598", 
              "https://doi.org/10.1007/s11120-012-9726-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-009-8673-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003086200", 
              "https://doi.org/10.1007/s00018-009-8673-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-12-07", 
        "datePublishedReg": "2013-12-07", 
        "description": "Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800+A0\u2212 with a time constant of ~20\u00a0ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800+A0\u2212, some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6\u00a0% of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11120-013-9957-4", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1022986", 
            "issn": [
              "0166-8595", 
              "1573-5079"
            ], 
            "name": "Photosynthesis Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "120"
          }
        ], 
        "keywords": [
          "decay component", 
          "reaction centers", 
          "pump-probe spectroscopy", 
          "ns decay component", 
          "charge recombination", 
          "variable fluorescence", 
          "singlet excited state", 
          "fraction of RCs", 
          "time-resolved fluorescence studies", 
          "photosynthetic reaction centers", 
          "excited states", 
          "homodimeric type I reaction center", 
          "RC state", 
          "nanosecond timescale", 
          "major decay component", 
          "decay time", 
          "fluorescence phenomenon", 
          "ns timescale", 
          "fluorescence yield", 
          "actinic light", 
          "Delayed Fluorescence", 
          "cyclic electron transport pathway", 
          "peripheral antenna system", 
          "electron acceptor pool", 
          "heliobacterial reaction center", 
          "strong illumination", 
          "type I reaction center", 
          "fluorescence emission", 
          "primary donor", 
          "significant fraction", 
          "fluorescence studies", 
          "acceptor side", 
          "fluorescence", 
          "illumination", 
          "recombination", 
          "timescales", 
          "light", 
          "electron transport pathways", 
          "state", 
          "protons", 
          "PS", 
          "spectroscopy", 
          "decay", 
          "ns", 
          "illumination of cells", 
          "emission", 
          "flashes", 
          "photosynthetic apparatus", 
          "modulation", 
          "phenomenon", 
          "fraction", 
          "brief flashes", 
          "antenna system", 
          "center", 
          "detail", 
          "heliobacteria", 
          "apparatus", 
          "seconds", 
          "components", 
          "saturation", 
          "time", 
          "yield", 
          "system", 
          "rise", 
          "bright light", 
          "creation", 
          "appearance", 
          "side", 
          "different characteristics", 
          "mechanism", 
          "transport pathways", 
          "characteristics", 
          "whole cells", 
          "oxygenic phototrophs", 
          "increase", 
          "underlying mechanism", 
          "donors", 
          "G.", 
          "cells", 
          "treatment of cells", 
          "study", 
          "dithionite", 
          "reduction", 
          "phosphorylate ADP", 
          "cycle", 
          "untreated cells", 
          "ability", 
          "exposure", 
          "phototrophs", 
          "P800", 
          "pathway", 
          "ADP", 
          "induction", 
          "vivo", 
          "pool", 
          "hypothesis", 
          "treatment"
        ], 
        "name": "Modulation of the fluorescence yield in heliobacterial cells by induction of charge recombination in the photosynthetic reaction center", 
        "pagination": "221-235", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022940263"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11120-013-9957-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24318506"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11120-013-9957-4", 
          "https://app.dimensions.ai/details/publication/pub.1022940263"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_585.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11120-013-9957-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11120-013-9957-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11120-013-9957-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11120-013-9957-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11120-013-9957-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    274 TRIPLES      21 PREDICATES      140 URIs      119 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11120-013-9957-4 schema:about N3004faf49f1d41c2b9855a03c27db4b5
    2 N7cacd74a68464e87a20cf28f9fabe375
    3 N86e89998255d4921814e8c8505b536b2
    4 N9383d9a82afb4be6bd59d6e7e2933623
    5 N9c71f332a2e2461bba74447b267211ca
    6 anzsrc-for:06
    7 anzsrc-for:0601
    8 anzsrc-for:0604
    9 anzsrc-for:0607
    10 schema:author Nc068b2207ec3428cb014abcc442bec1b
    11 schema:citation sg:pub.10.1007/0-306-47954-0_31
    12 sg:pub.10.1007/978-1-4020-4256-0_16
    13 sg:pub.10.1007/bf00406568
    14 sg:pub.10.1007/s00018-009-8673-x
    15 sg:pub.10.1007/s11120-010-9554-8
    16 sg:pub.10.1007/s11120-010-9558-4
    17 sg:pub.10.1007/s11120-012-9723-z
    18 sg:pub.10.1007/s11120-012-9726-9
    19 sg:pub.10.1007/s11120-013-9871-9
    20 sg:pub.10.1023/a:1007095619317
    21 sg:pub.10.1023/a:1014911832504
    22 schema:datePublished 2013-12-07
    23 schema:datePublishedReg 2013-12-07
    24 schema:description Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800+A0− with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800+A0−, some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence.
    25 schema:genre article
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N661f1364913748e0a69d499f192f8a0a
    28 Nf42fb2a936854001b07c0f8897ed8296
    29 sg:journal.1022986
    30 schema:keywords ADP
    31 Delayed Fluorescence
    32 G.
    33 P800
    34 PS
    35 RC state
    36 ability
    37 acceptor side
    38 actinic light
    39 antenna system
    40 apparatus
    41 appearance
    42 brief flashes
    43 bright light
    44 cells
    45 center
    46 characteristics
    47 charge recombination
    48 components
    49 creation
    50 cycle
    51 cyclic electron transport pathway
    52 decay
    53 decay component
    54 decay time
    55 detail
    56 different characteristics
    57 dithionite
    58 donors
    59 electron acceptor pool
    60 electron transport pathways
    61 emission
    62 excited states
    63 exposure
    64 flashes
    65 fluorescence
    66 fluorescence emission
    67 fluorescence phenomenon
    68 fluorescence studies
    69 fluorescence yield
    70 fraction
    71 fraction of RCs
    72 heliobacteria
    73 heliobacterial reaction center
    74 homodimeric type I reaction center
    75 hypothesis
    76 illumination
    77 illumination of cells
    78 increase
    79 induction
    80 light
    81 major decay component
    82 mechanism
    83 modulation
    84 nanosecond timescale
    85 ns
    86 ns decay component
    87 ns timescale
    88 oxygenic phototrophs
    89 pathway
    90 peripheral antenna system
    91 phenomenon
    92 phosphorylate ADP
    93 photosynthetic apparatus
    94 photosynthetic reaction centers
    95 phototrophs
    96 pool
    97 primary donor
    98 protons
    99 pump-probe spectroscopy
    100 reaction centers
    101 recombination
    102 reduction
    103 rise
    104 saturation
    105 seconds
    106 side
    107 significant fraction
    108 singlet excited state
    109 spectroscopy
    110 state
    111 strong illumination
    112 study
    113 system
    114 time
    115 time-resolved fluorescence studies
    116 timescales
    117 transport pathways
    118 treatment
    119 treatment of cells
    120 type I reaction center
    121 underlying mechanism
    122 untreated cells
    123 variable fluorescence
    124 vivo
    125 whole cells
    126 yield
    127 schema:name Modulation of the fluorescence yield in heliobacterial cells by induction of charge recombination in the photosynthetic reaction center
    128 schema:pagination 221-235
    129 schema:productId N80b7b656e3f54f6da365f7e9eb666d10
    130 Nbf87dfc23f064c62ae5ea9f36eaa6258
    131 Ncaa654dc510245feb0c21344a675bc1e
    132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022940263
    133 https://doi.org/10.1007/s11120-013-9957-4
    134 schema:sdDatePublished 2022-08-04T17:01
    135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    136 schema:sdPublisher Na550514b57e04081974cc68a309a9494
    137 schema:url https://doi.org/10.1007/s11120-013-9957-4
    138 sgo:license sg:explorer/license/
    139 sgo:sdDataset articles
    140 rdf:type schema:ScholarlyArticle
    141 N17b05424c4454b9b8b8345177cd624d5 rdf:first sg:person.01103560265.56
    142 rdf:rest N2e1fd09b4c794a2ab13e1342644545f0
    143 N2e1fd09b4c794a2ab13e1342644545f0 rdf:first sg:person.01111234443.75
    144 rdf:rest N71fd6d7074fd4264a1cf89b18e0c5d01
    145 N3004faf49f1d41c2b9855a03c27db4b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Photosynthetic Reaction Center Complex Proteins
    147 rdf:type schema:DefinedTerm
    148 N45a897aa572c47c9b1c2398e891640ac rdf:first sg:person.0745463335.83
    149 rdf:rest rdf:nil
    150 N661f1364913748e0a69d499f192f8a0a schema:volumeNumber 120
    151 rdf:type schema:PublicationVolume
    152 N6c9131c39f83450dbd53fdaae842ac60 rdf:first sg:person.01066667537.69
    153 rdf:rest N17b05424c4454b9b8b8345177cd624d5
    154 N71fd6d7074fd4264a1cf89b18e0c5d01 rdf:first sg:person.010640104654.00
    155 rdf:rest N45a897aa572c47c9b1c2398e891640ac
    156 N7cacd74a68464e87a20cf28f9fabe375 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Fluorescence
    158 rdf:type schema:DefinedTerm
    159 N80b7b656e3f54f6da365f7e9eb666d10 schema:name pubmed_id
    160 schema:value 24318506
    161 rdf:type schema:PropertyValue
    162 N86e89998255d4921814e8c8505b536b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Bacterial Proteins
    164 rdf:type schema:DefinedTerm
    165 N9383d9a82afb4be6bd59d6e7e2933623 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Gram-Positive Bacteria
    167 rdf:type schema:DefinedTerm
    168 N9c71f332a2e2461bba74447b267211ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Photosynthesis
    170 rdf:type schema:DefinedTerm
    171 Na550514b57e04081974cc68a309a9494 schema:name Springer Nature - SN SciGraph project
    172 rdf:type schema:Organization
    173 Nbf87dfc23f064c62ae5ea9f36eaa6258 schema:name doi
    174 schema:value 10.1007/s11120-013-9957-4
    175 rdf:type schema:PropertyValue
    176 Nc068b2207ec3428cb014abcc442bec1b rdf:first sg:person.01272503314.34
    177 rdf:rest N6c9131c39f83450dbd53fdaae842ac60
    178 Ncaa654dc510245feb0c21344a675bc1e schema:name dimensions_id
    179 schema:value pub.1022940263
    180 rdf:type schema:PropertyValue
    181 Nf42fb2a936854001b07c0f8897ed8296 schema:issueNumber 1-2
    182 rdf:type schema:PublicationIssue
    183 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    184 schema:name Biological Sciences
    185 rdf:type schema:DefinedTerm
    186 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Biochemistry and Cell Biology
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Genetics
    191 rdf:type schema:DefinedTerm
    192 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Plant Biology
    194 rdf:type schema:DefinedTerm
    195 sg:journal.1022986 schema:issn 0166-8595
    196 1573-5079
    197 schema:name Photosynthesis Research
    198 schema:publisher Springer Nature
    199 rdf:type schema:Periodical
    200 sg:person.010640104654.00 schema:affiliation grid-institutes:grid.215654.1
    201 schema:familyName Lin
    202 schema:givenName Su
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640104654.00
    204 rdf:type schema:Person
    205 sg:person.01066667537.69 schema:affiliation grid-institutes:grid.215654.1
    206 schema:familyName Sarrou
    207 schema:givenName Iosifina
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066667537.69
    209 rdf:type schema:Person
    210 sg:person.01103560265.56 schema:affiliation grid-institutes:grid.450875.b
    211 schema:familyName Rappaport
    212 schema:givenName Fabrice
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56
    214 rdf:type schema:Person
    215 sg:person.01111234443.75 schema:affiliation grid-institutes:grid.5326.2
    216 schema:familyName Santabarbara
    217 schema:givenName Stefano
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111234443.75
    219 rdf:type schema:Person
    220 sg:person.01272503314.34 schema:affiliation grid-institutes:grid.450875.b
    221 schema:familyName Redding
    222 schema:givenName Kevin E.
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272503314.34
    224 rdf:type schema:Person
    225 sg:person.0745463335.83 schema:affiliation grid-institutes:grid.215654.1
    226 schema:familyName Reifschneider
    227 schema:givenName Kiera T.
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745463335.83
    229 rdf:type schema:Person
    230 sg:pub.10.1007/0-306-47954-0_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017725803
    231 https://doi.org/10.1007/0-306-47954-0_31
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/978-1-4020-4256-0_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036589238
    234 https://doi.org/10.1007/978-1-4020-4256-0_16
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/bf00406568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026584044
    237 https://doi.org/10.1007/bf00406568
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s00018-009-8673-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003086200
    240 https://doi.org/10.1007/s00018-009-8673-x
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s11120-010-9554-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038494415
    243 https://doi.org/10.1007/s11120-010-9554-8
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s11120-010-9558-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025073404
    246 https://doi.org/10.1007/s11120-010-9558-4
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s11120-012-9723-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030968403
    249 https://doi.org/10.1007/s11120-012-9723-z
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s11120-012-9726-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049636598
    252 https://doi.org/10.1007/s11120-012-9726-9
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s11120-013-9871-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047180540
    255 https://doi.org/10.1007/s11120-013-9871-9
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1023/a:1007095619317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025013912
    258 https://doi.org/10.1023/a:1007095619317
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1023/a:1014911832504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046605050
    261 https://doi.org/10.1023/a:1014911832504
    262 rdf:type schema:CreativeWork
    263 grid-institutes:grid.215654.1 schema:alternateName Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA
    264 schema:name Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA
    265 rdf:type schema:Organization
    266 grid-institutes:grid.450875.b schema:alternateName Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France
    267 schema:name Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA
    268 Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France
    269 rdf:type schema:Organization
    270 grid-institutes:grid.5326.2 schema:alternateName Institute of Biophysics, Consiglio Nazionale delle Richerche, Via G. Celoria 26, 20133, Milan, Italy
    271 schema:name Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., 85287-1604, Tempe, AZ, USA
    272 Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Univ. P. et M. Curie, 75005, Paris, France
    273 Institute of Biophysics, Consiglio Nazionale delle Richerche, Via G. Celoria 26, 20133, Milan, Italy
    274 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...