Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-05-06

AUTHORS

Giulia Bonente, Cinzia Formighieri, Manuela Mantelli, Claudia Catalanotti, Giovanni Giuliano, Tomas Morosinotto, Roberto Bassi

ABSTRACT

Microalgae have a valuable potential for biofuels production. As a matter of fact, algae can produce different molecules with high energy content, including molecular hydrogen (H2) by the activity of a chloroplastic hydrogenase fueled by reducing power derived from water and light energy. The efficiency of this reaction, however, is limited and depends from an intricate relationships between oxygenic photosynthesis and mitochondrial respiration. The way toward obtaining algal strains with high productivity in photobioreactors requires engineering of their metabolism at multiple levels in a process comparable to domestication of crops that were derived from their wild ancestors through accumulation of genetic traits providing improved productivity under conditions of intensive cultivation as well as improved nutritional/industrial properties. This holds true for the production of any biofuels from algae: there is the need to isolate multiple traits to be combined and produce organisms with increased performances. Among the different limitations in H2 productivity, we identified three with a major relevance, namely: (i) the light distribution through the mass culture; (ii) the strong sensitivity of the hydrogenase to even very low oxygen concentrations; and (iii) the presence of alternative pathways, such as the cyclic electron transport, competing for reducing equivalents with hydrogenase and H2 production. In order to identify potentially favorable mutations, we generated a collection of random mutants in Chlamydomonas reinhardtii which were selected through phenotype analysis for: (i) a reduced photosynthetic antenna size, and thus a lower culture optical density; (ii) an altered photosystem II activity as a tool to manipulate the oxygen concentration within the culture; and (iii) State 1–State 2 transition mutants, for a reduced cyclic electron flow and maximized electrons flow toward the hydrogenase. Such a broad approach has been possible thanks to the high throughput application of absorption/fluorescence optical spectroscopy methods. Strong and weak points of this approach are discussed. More... »

PAGES

107

References to SciGraph publications

  • 2003-02-12. tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size in PLANTA
  • 1996-10. Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii in PLANT MOLECULAR BIOLOGY
  • 2000-08. Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source in PLANTA
  • 1998-05. Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae) in PHOTOSYNTHESIS RESEARCH
  • 2003-12-02. A genome’s-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii in CURRENT GENETICS
  • 2000-05. The Soret absorption properties of carotenoids and chlorophylls in antenna complexes of higher plants in PHOTOSYNTHESIS RESEARCH
  • 2005-02. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7 in NATURE
  • 1998-12. Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells in JOURNAL OF APPLIED PHYCOLOGY
  • 1970-08. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 in NATURE
  • 2001-07. The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii in MOLECULAR GENETICS AND GENOMICS
  • 1991-02. The chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii in PLANTA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11120-011-9660-2

    DOI

    http://dx.doi.org/10.1007/s11120-011-9660-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042726800

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21547493


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chlamydomonas reinhardtii", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorescence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Knockout Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Vectors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kinetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutagenesis, Insertional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidation-Reduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photobioreactors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photosystem II Protein Complex", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pigments, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transformation, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bonente", 
            "givenName": "Giulia", 
            "id": "sg:person.01113534143.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113534143.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Formighieri", 
            "givenName": "Cinzia", 
            "id": "sg:person.0743603540.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743603540.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mantelli", 
            "givenName": "Manuela", 
            "id": "sg:person.01036607411.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036607411.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, 94305, Stanford, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.418000.d", 
              "name": [
                "Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy", 
                "Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, 94305, Stanford, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Catalanotti", 
            "givenName": "Claudia", 
            "id": "sg:person.0622500771.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622500771.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5196.b", 
              "name": [
                "Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giuliano", 
            "givenName": "Giovanni", 
            "id": "sg:person.01234626731.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234626731.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biologia, Universit\u00e0 di Padova, Via U. Bassi 58/B, 34134, Padova, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5608.b", 
              "name": [
                "Dipartimento di Biologia, Universit\u00e0 di Padova, Via U. Bassi 58/B, 34134, Padova, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morosinotto", 
            "givenName": "Tomas", 
            "id": "sg:person.0657264117.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657264117.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5611.3", 
              "name": [
                "Dipartimento di Biotecnologie, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bassi", 
            "givenName": "Roberto", 
            "id": "sg:person.0605371157.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1008076231267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042844175", 
              "https://doi.org/10.1023/a:1008076231267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006024827225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001932607", 
              "https://doi.org/10.1023/a:1006024827225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004380100485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014365256", 
              "https://doi.org/10.1007/s004380100485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00039389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011767750", 
              "https://doi.org/10.1007/bf00039389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-002-0968-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075277755", 
              "https://doi.org/10.1007/s00425-002-0968-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003770695", 
              "https://doi.org/10.1038/nature03286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00197742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040637515", 
              "https://doi.org/10.1007/bf00197742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006455230379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015333276", 
              "https://doi.org/10.1023/a:1006455230379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00294-003-0460-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002384700", 
              "https://doi.org/10.1007/s00294-003-0460-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004250000279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005292939", 
              "https://doi.org/10.1007/s004250000279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/227680a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010419937", 
              "https://doi.org/10.1038/227680a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-05-06", 
        "datePublishedReg": "2011-05-06", 
        "description": "Microalgae have a valuable potential for biofuels production. As a matter of fact, algae can produce different molecules with high energy content, including molecular hydrogen (H2) by the activity of a chloroplastic hydrogenase fueled by reducing power derived from water and light energy. The efficiency of this reaction, however, is limited and depends from an intricate relationships between oxygenic photosynthesis and mitochondrial respiration. The way toward obtaining algal strains with high productivity in photobioreactors requires engineering of their metabolism at multiple levels in a process comparable to domestication of crops that were derived from their wild ancestors through accumulation of genetic traits providing improved productivity under conditions of intensive cultivation as well as improved nutritional/industrial properties. This holds true for the production of any biofuels from algae: there is the need to isolate multiple traits to be combined and produce organisms with increased performances. Among the different limitations in H2 productivity, we identified three with a major relevance, namely: (i) the light distribution through the mass culture; (ii) the strong sensitivity of the hydrogenase to even very low oxygen concentrations; and (iii) the presence of alternative pathways, such as the cyclic electron transport, competing for reducing equivalents with hydrogenase and H2 production. In order to identify potentially favorable mutations, we generated a collection of random mutants in Chlamydomonas reinhardtii which were selected through phenotype analysis for: (i) a reduced photosynthetic antenna size, and thus a lower culture optical density; (ii) an altered photosystem II activity as a tool to manipulate the oxygen concentration within the culture; and (iii) State 1\u2013State 2 transition mutants, for a reduced cyclic electron flow and maximized electrons flow toward the hydrogenase. Such a broad approach has been possible thanks to the high throughput application of absorption/fluorescence optical spectroscopy methods. Strong and weak points of this approach are discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11120-011-9660-2", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1022986", 
            "issn": [
              "0166-8595", 
              "1573-5079"
            ], 
            "name": "Photosynthesis Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "108"
          }
        ], 
        "keywords": [
          "Chlamydomonas reinhardtii", 
          "photosynthetic antenna size", 
          "domestication of crops", 
          "photosystem II activity", 
          "cyclic electron transport", 
          "cyclic electron flow", 
          "wild ancestor", 
          "oxygenic photosynthesis", 
          "phenotypic selection", 
          "multiple traits", 
          "favorable mutations", 
          "random mutants", 
          "algal strains", 
          "genetic traits", 
          "mitochondrial respiration", 
          "transition mutants", 
          "II activity", 
          "phenotype analysis", 
          "hydrogenase", 
          "high-throughput applications", 
          "reinhardtii", 
          "mutants", 
          "culture optical density", 
          "algae", 
          "domestication", 
          "biofuel production", 
          "electron flow", 
          "low oxygen concentrations", 
          "light energy", 
          "traits", 
          "alternative pathway", 
          "electron transport", 
          "intricate relationship", 
          "intensive cultivation", 
          "different molecules", 
          "photosynthesis", 
          "mass culture", 
          "high productivity", 
          "mutagenesis", 
          "ancestor", 
          "multiple levels", 
          "organisms", 
          "productivity", 
          "oxygen concentration", 
          "H2 productivity", 
          "microalgae", 
          "mutations", 
          "high energy content", 
          "production", 
          "crops", 
          "throughput applications", 
          "pathway", 
          "respiration", 
          "antenna size", 
          "photobioreactor", 
          "H2 production", 
          "metabolism", 
          "improved productivity", 
          "major relevance", 
          "activity", 
          "accumulation", 
          "culture", 
          "cultivation", 
          "valuable potential", 
          "strains", 
          "molecules", 
          "biofuels", 
          "selection", 
          "transport", 
          "energy content", 
          "different limitations", 
          "molecular hydrogen", 
          "concentration", 
          "presence", 
          "levels", 
          "potential", 
          "engineering", 
          "content", 
          "distribution", 
          "analysis", 
          "collection", 
          "light distribution", 
          "optical density", 
          "industrial property", 
          "water", 
          "size", 
          "relevance", 
          "process", 
          "broader approach", 
          "strategies", 
          "tool", 
          "conditions", 
          "relationship", 
          "strong sensitivity", 
          "optical spectroscopy methods", 
          "approach", 
          "equivalent", 
          "sensitivity", 
          "possible thanks", 
          "density", 
          "limitations", 
          "fact", 
          "reaction", 
          "improved performance", 
          "spectroscopy methods", 
          "matter", 
          "state", 
          "efficiency", 
          "order", 
          "properties", 
          "performance", 
          "way", 
          "applications", 
          "need", 
          "point", 
          "thanks", 
          "method", 
          "matter of fact", 
          "hydrogen", 
          "flow", 
          "electrons", 
          "weak points", 
          "power", 
          "energy"
        ], 
        "name": "Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors", 
        "pagination": "107", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042726800"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11120-011-9660-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21547493"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11120-011-9660-2", 
          "https://app.dimensions.ai/details/publication/pub.1042726800"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_530.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11120-011-9660-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11120-011-9660-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11120-011-9660-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11120-011-9660-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11120-011-9660-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    353 TRIPLES      21 PREDICATES      178 URIs      159 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11120-011-9660-2 schema:about N098802062da34a3bb54cb39ca4f0bdf5
    2 N1272c272a745406882ee1073605f5f7d
    3 N1b42410269414135a14fae704b890c5e
    4 N42a8d2233fab4bb1a014972d29884d3e
    5 N4b7513c5548d4ff8beb418519f6b9f48
    6 N62322c303a6145a89946bfbfca8b91d0
    7 N6d1f8872f4a54f79bd638d35c7190525
    8 N74b21367c54245c7a1c172a671e86bde
    9 N7890df0cebbe49c587ef2d6420daf34d
    10 N8c1e59475357437095f9aa75e5d63e14
    11 N9311e6d938c0479a859dd478cefb49c1
    12 Na0f26219f59449b7ad0268023018ff10
    13 Na49f0584453a4eaf8971b6fae2b3ce60
    14 Nb30c3f2ed9244e6882f1fd1a312e702b
    15 Nbdd65b13e32f42f8b3d270886653de7a
    16 Nc865f3eccfd642a89ee35df86a21018d
    17 Nd5bef8a179f345aeb25db029f31e8d11
    18 Ne0f9ec6488b44bf188bdd8d32c71af7e
    19 anzsrc-for:06
    20 anzsrc-for:0607
    21 schema:author N10c5dea84ef64e5a851a85e5bcbe9807
    22 schema:citation sg:pub.10.1007/bf00039389
    23 sg:pub.10.1007/bf00197742
    24 sg:pub.10.1007/s00294-003-0460-x
    25 sg:pub.10.1007/s00425-002-0968-1
    26 sg:pub.10.1007/s004250000279
    27 sg:pub.10.1007/s004380100485
    28 sg:pub.10.1023/a:1006024827225
    29 sg:pub.10.1023/a:1006455230379
    30 sg:pub.10.1023/a:1008076231267
    31 sg:pub.10.1038/227680a0
    32 sg:pub.10.1038/nature03286
    33 schema:datePublished 2011-05-06
    34 schema:datePublishedReg 2011-05-06
    35 schema:description Microalgae have a valuable potential for biofuels production. As a matter of fact, algae can produce different molecules with high energy content, including molecular hydrogen (H2) by the activity of a chloroplastic hydrogenase fueled by reducing power derived from water and light energy. The efficiency of this reaction, however, is limited and depends from an intricate relationships between oxygenic photosynthesis and mitochondrial respiration. The way toward obtaining algal strains with high productivity in photobioreactors requires engineering of their metabolism at multiple levels in a process comparable to domestication of crops that were derived from their wild ancestors through accumulation of genetic traits providing improved productivity under conditions of intensive cultivation as well as improved nutritional/industrial properties. This holds true for the production of any biofuels from algae: there is the need to isolate multiple traits to be combined and produce organisms with increased performances. Among the different limitations in H2 productivity, we identified three with a major relevance, namely: (i) the light distribution through the mass culture; (ii) the strong sensitivity of the hydrogenase to even very low oxygen concentrations; and (iii) the presence of alternative pathways, such as the cyclic electron transport, competing for reducing equivalents with hydrogenase and H2 production. In order to identify potentially favorable mutations, we generated a collection of random mutants in Chlamydomonas reinhardtii which were selected through phenotype analysis for: (i) a reduced photosynthetic antenna size, and thus a lower culture optical density; (ii) an altered photosystem II activity as a tool to manipulate the oxygen concentration within the culture; and (iii) State 1–State 2 transition mutants, for a reduced cyclic electron flow and maximized electrons flow toward the hydrogenase. Such a broad approach has been possible thanks to the high throughput application of absorption/fluorescence optical spectroscopy methods. Strong and weak points of this approach are discussed.
    36 schema:genre article
    37 schema:isAccessibleForFree false
    38 schema:isPartOf Nb636383f68214d1b9d547415c7fc68f1
    39 Nf7a73171ba68467eb1657352d8c1521b
    40 sg:journal.1022986
    41 schema:keywords Chlamydomonas reinhardtii
    42 H2 production
    43 H2 productivity
    44 II activity
    45 accumulation
    46 activity
    47 algae
    48 algal strains
    49 alternative pathway
    50 analysis
    51 ancestor
    52 antenna size
    53 applications
    54 approach
    55 biofuel production
    56 biofuels
    57 broader approach
    58 collection
    59 concentration
    60 conditions
    61 content
    62 crops
    63 cultivation
    64 culture
    65 culture optical density
    66 cyclic electron flow
    67 cyclic electron transport
    68 density
    69 different limitations
    70 different molecules
    71 distribution
    72 domestication
    73 domestication of crops
    74 efficiency
    75 electron flow
    76 electron transport
    77 electrons
    78 energy
    79 energy content
    80 engineering
    81 equivalent
    82 fact
    83 favorable mutations
    84 flow
    85 genetic traits
    86 high energy content
    87 high productivity
    88 high-throughput applications
    89 hydrogen
    90 hydrogenase
    91 improved performance
    92 improved productivity
    93 industrial property
    94 intensive cultivation
    95 intricate relationship
    96 levels
    97 light distribution
    98 light energy
    99 limitations
    100 low oxygen concentrations
    101 major relevance
    102 mass culture
    103 matter
    104 matter of fact
    105 metabolism
    106 method
    107 microalgae
    108 mitochondrial respiration
    109 molecular hydrogen
    110 molecules
    111 multiple levels
    112 multiple traits
    113 mutagenesis
    114 mutants
    115 mutations
    116 need
    117 optical density
    118 optical spectroscopy methods
    119 order
    120 organisms
    121 oxygen concentration
    122 oxygenic photosynthesis
    123 pathway
    124 performance
    125 phenotype analysis
    126 phenotypic selection
    127 photobioreactor
    128 photosynthesis
    129 photosynthetic antenna size
    130 photosystem II activity
    131 point
    132 possible thanks
    133 potential
    134 power
    135 presence
    136 process
    137 production
    138 productivity
    139 properties
    140 random mutants
    141 reaction
    142 reinhardtii
    143 relationship
    144 relevance
    145 respiration
    146 selection
    147 sensitivity
    148 size
    149 spectroscopy methods
    150 state
    151 strains
    152 strategies
    153 strong sensitivity
    154 thanks
    155 throughput applications
    156 tool
    157 traits
    158 transition mutants
    159 transport
    160 valuable potential
    161 water
    162 way
    163 weak points
    164 wild ancestor
    165 schema:name Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors
    166 schema:pagination 107
    167 schema:productId N2b980bd96e234f6187001e58aa845826
    168 Nb2ae7a3c49594a04876b82ef0d34d476
    169 Nbfc60712003246399c2eef03cfa1eea8
    170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042726800
    171 https://doi.org/10.1007/s11120-011-9660-2
    172 schema:sdDatePublished 2022-10-01T06:36
    173 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    174 schema:sdPublisher N5a7675013cf44114b756551e814c99b8
    175 schema:url https://doi.org/10.1007/s11120-011-9660-2
    176 sgo:license sg:explorer/license/
    177 sgo:sdDataset articles
    178 rdf:type schema:ScholarlyArticle
    179 N098802062da34a3bb54cb39ca4f0bdf5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Oxidation-Reduction
    181 rdf:type schema:DefinedTerm
    182 N0a13aab0874141aeaf9f3ea6607b96d9 rdf:first sg:person.0657264117.32
    183 rdf:rest Na053aa5cd57e421fbece9e758cb81794
    184 N10c5dea84ef64e5a851a85e5bcbe9807 rdf:first sg:person.01113534143.42
    185 rdf:rest N7f5d45191fcb47068402792bc3aa69cc
    186 N1272c272a745406882ee1073605f5f7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Phenotype
    188 rdf:type schema:DefinedTerm
    189 N17e03e5d679b4fe2b5a7a517e3b970bd rdf:first sg:person.01036607411.02
    190 rdf:rest Ncb3745d480bf4fec82249b430470258c
    191 N1b42410269414135a14fae704b890c5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Polymerase Chain Reaction
    193 rdf:type schema:DefinedTerm
    194 N2b980bd96e234f6187001e58aa845826 schema:name pubmed_id
    195 schema:value 21547493
    196 rdf:type schema:PropertyValue
    197 N42a8d2233fab4bb1a014972d29884d3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Chlamydomonas reinhardtii
    199 rdf:type schema:DefinedTerm
    200 N4b7513c5548d4ff8beb418519f6b9f48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Genome, Plant
    202 rdf:type schema:DefinedTerm
    203 N4cc484549e8843c09c8c6591c87a5957 rdf:first sg:person.01234626731.61
    204 rdf:rest N0a13aab0874141aeaf9f3ea6607b96d9
    205 N5a7675013cf44114b756551e814c99b8 schema:name Springer Nature - SN SciGraph project
    206 rdf:type schema:Organization
    207 N62322c303a6145a89946bfbfca8b91d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name DNA, Plant
    209 rdf:type schema:DefinedTerm
    210 N6d1f8872f4a54f79bd638d35c7190525 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Pigments, Biological
    212 rdf:type schema:DefinedTerm
    213 N74b21367c54245c7a1c172a671e86bde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Photosystem II Protein Complex
    215 rdf:type schema:DefinedTerm
    216 N7890df0cebbe49c587ef2d6420daf34d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Transformation, Genetic
    218 rdf:type schema:DefinedTerm
    219 N7f5d45191fcb47068402792bc3aa69cc rdf:first sg:person.0743603540.74
    220 rdf:rest N17e03e5d679b4fe2b5a7a517e3b970bd
    221 N8c1e59475357437095f9aa75e5d63e14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    222 schema:name Gene Knockout Techniques
    223 rdf:type schema:DefinedTerm
    224 N9311e6d938c0479a859dd478cefb49c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name Genetic Testing
    226 rdf:type schema:DefinedTerm
    227 Na053aa5cd57e421fbece9e758cb81794 rdf:first sg:person.0605371157.35
    228 rdf:rest rdf:nil
    229 Na0f26219f59449b7ad0268023018ff10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    230 schema:name Mutagenesis, Insertional
    231 rdf:type schema:DefinedTerm
    232 Na49f0584453a4eaf8971b6fae2b3ce60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    233 schema:name Genetic Vectors
    234 rdf:type schema:DefinedTerm
    235 Nb2ae7a3c49594a04876b82ef0d34d476 schema:name doi
    236 schema:value 10.1007/s11120-011-9660-2
    237 rdf:type schema:PropertyValue
    238 Nb30c3f2ed9244e6882f1fd1a312e702b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    239 schema:name Photobioreactors
    240 rdf:type schema:DefinedTerm
    241 Nb636383f68214d1b9d547415c7fc68f1 schema:volumeNumber 108
    242 rdf:type schema:PublicationVolume
    243 Nbdd65b13e32f42f8b3d270886653de7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    244 schema:name Reproducibility of Results
    245 rdf:type schema:DefinedTerm
    246 Nbfc60712003246399c2eef03cfa1eea8 schema:name dimensions_id
    247 schema:value pub.1042726800
    248 rdf:type schema:PropertyValue
    249 Nc865f3eccfd642a89ee35df86a21018d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    250 schema:name Mutation
    251 rdf:type schema:DefinedTerm
    252 Ncb3745d480bf4fec82249b430470258c rdf:first sg:person.0622500771.15
    253 rdf:rest N4cc484549e8843c09c8c6591c87a5957
    254 Nd5bef8a179f345aeb25db029f31e8d11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    255 schema:name Fluorescence
    256 rdf:type schema:DefinedTerm
    257 Ne0f9ec6488b44bf188bdd8d32c71af7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    258 schema:name Kinetics
    259 rdf:type schema:DefinedTerm
    260 Nf7a73171ba68467eb1657352d8c1521b schema:issueNumber 2-3
    261 rdf:type schema:PublicationIssue
    262 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    263 schema:name Biological Sciences
    264 rdf:type schema:DefinedTerm
    265 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    266 schema:name Plant Biology
    267 rdf:type schema:DefinedTerm
    268 sg:journal.1022986 schema:issn 0166-8595
    269 1573-5079
    270 schema:name Photosynthesis Research
    271 schema:publisher Springer Nature
    272 rdf:type schema:Periodical
    273 sg:person.01036607411.02 schema:affiliation grid-institutes:grid.5611.3
    274 schema:familyName Mantelli
    275 schema:givenName Manuela
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036607411.02
    277 rdf:type schema:Person
    278 sg:person.01113534143.42 schema:affiliation grid-institutes:grid.5611.3
    279 schema:familyName Bonente
    280 schema:givenName Giulia
    281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113534143.42
    282 rdf:type schema:Person
    283 sg:person.01234626731.61 schema:affiliation grid-institutes:grid.5196.b
    284 schema:familyName Giuliano
    285 schema:givenName Giovanni
    286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234626731.61
    287 rdf:type schema:Person
    288 sg:person.0605371157.35 schema:affiliation grid-institutes:grid.5611.3
    289 schema:familyName Bassi
    290 schema:givenName Roberto
    291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
    292 rdf:type schema:Person
    293 sg:person.0622500771.15 schema:affiliation grid-institutes:grid.418000.d
    294 schema:familyName Catalanotti
    295 schema:givenName Claudia
    296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622500771.15
    297 rdf:type schema:Person
    298 sg:person.0657264117.32 schema:affiliation grid-institutes:grid.5608.b
    299 schema:familyName Morosinotto
    300 schema:givenName Tomas
    301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657264117.32
    302 rdf:type schema:Person
    303 sg:person.0743603540.74 schema:affiliation grid-institutes:grid.5611.3
    304 schema:familyName Formighieri
    305 schema:givenName Cinzia
    306 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743603540.74
    307 rdf:type schema:Person
    308 sg:pub.10.1007/bf00039389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011767750
    309 https://doi.org/10.1007/bf00039389
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1007/bf00197742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040637515
    312 https://doi.org/10.1007/bf00197742
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1007/s00294-003-0460-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002384700
    315 https://doi.org/10.1007/s00294-003-0460-x
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1007/s00425-002-0968-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075277755
    318 https://doi.org/10.1007/s00425-002-0968-1
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1007/s004250000279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005292939
    321 https://doi.org/10.1007/s004250000279
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1007/s004380100485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014365256
    324 https://doi.org/10.1007/s004380100485
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1023/a:1006024827225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001932607
    327 https://doi.org/10.1023/a:1006024827225
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1023/a:1006455230379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015333276
    330 https://doi.org/10.1023/a:1006455230379
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1023/a:1008076231267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042844175
    333 https://doi.org/10.1023/a:1008076231267
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1038/227680a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010419937
    336 https://doi.org/10.1038/227680a0
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1038/nature03286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003770695
    339 https://doi.org/10.1038/nature03286
    340 rdf:type schema:CreativeWork
    341 grid-institutes:grid.418000.d schema:alternateName Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, 94305, Stanford, CA, USA
    342 schema:name Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, 94305, Stanford, CA, USA
    343 Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
    344 rdf:type schema:Organization
    345 grid-institutes:grid.5196.b schema:alternateName Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
    346 schema:name Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
    347 rdf:type schema:Organization
    348 grid-institutes:grid.5608.b schema:alternateName Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 34134, Padova, Italy
    349 schema:name Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 34134, Padova, Italy
    350 rdf:type schema:Organization
    351 grid-institutes:grid.5611.3 schema:alternateName Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
    352 schema:name Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
    353 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...