Spatiotemporally variable incident light, leaf photosynthesis, and yield across a greenhouse: fine-scale hemispherical photography and a photosynthesis model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-09

AUTHORS

Kensuke Kimura, Daisuke Yasutake, Kota Koikawa, Masaharu Kitano

ABSTRACT

Although greenhouse agriculture can generate high crop yields, they vary due to spatiotemporal differences in incident light and photosynthesis. To elucidate these dynamics, multipoint analysis of hemispheric images and a photosynthesis model were used to visualize the spatiotemporal distribution of photosynthetic photon flux density (PPFD) and leaf photosynthetic rate (A) and compared these with strawberry fruit yield in a greenhouse. This method enabled successful estimation of spatiotemporal variability in PPFD and A with relative root mean square errors of 4.4% and 11.0%, respectively. PPFD, captured at ca. 2 m resolution, varied diurnally and seasonally based on sun position and external light intensity. A showed less spatial variability, because it is reduced by physical and physiological mechanisms in the leaves at excessive leaf temperatures and becomes saturated at high PPFD. Yield spatial variability was better explained by A than by PPFD. The association between A and yield weakened over the cultivation period (R2 declined from 46% in winter to 12% in spring), thus suggesting that, over the cultivation period, factors such as photoassimilate availability replaced A as the primary limiting factor. The proposed method can be directly applied to other types of greenhouses, and the findings may facilitate spatiotemporal optimization in crop production, improving precision greenhouse agriculture. More... »

PAGES

1-25

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11119-022-09933-z

DOI

http://dx.doi.org/10.1007/s11119-022-09933-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149358820


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Crop and Pasture Production", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, 305-8604, Tsukuba, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416835.d", 
          "name": [
            "Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, 305-8604, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimura", 
        "givenName": "Kensuke", 
        "id": "sg:person.015210713101.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210713101.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Agriculture, Kyushu University, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Faculty of Agriculture, Kyushu University, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasutake", 
        "givenName": "Daisuke", 
        "id": "sg:person.012613301505.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012613301505.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koikawa", 
        "givenName": "Kota", 
        "id": "sg:person.015526327241.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015526327241.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IoP Collaborative Creation Center, Kochi University, Kochi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.278276.e", 
          "name": [
            "Faculty of Agriculture, Kyushu University, Fukuoka, Japan", 
            "IoP Collaborative Creation Center, Kochi University, Kochi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kitano", 
        "givenName": "Masaharu", 
        "id": "sg:person.016407453061.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016407453061.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00386231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032536189", 
          "https://doi.org/10.1007/bf00386231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00195076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040108392", 
          "https://doi.org/10.1007/bf00195076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41592-019-0582-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1121388327", 
          "https://doi.org/10.1038/s41592-019-0582-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-6024-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014657181", 
          "https://doi.org/10.1007/978-1-4612-6024-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-7291-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045553748", 
          "https://doi.org/10.1007/978-94-017-7291-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/forest:19890593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056968660", 
          "https://doi.org/10.1051/forest:19890593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-7291-4_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038591167", 
          "https://doi.org/10.1007/978-94-017-7291-4_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-012-9274-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020655667", 
          "https://doi.org/10.1007/s11119-012-9274-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-024-1098-3_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085406245", 
          "https://doi.org/10.1007/978-94-024-1098-3_2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-09", 
    "datePublishedReg": "2022-07-09", 
    "description": "Although greenhouse agriculture can generate high crop yields, they vary due to spatiotemporal differences in incident light and photosynthesis. To elucidate these dynamics, multipoint analysis of hemispheric images and a photosynthesis model were used to visualize the spatiotemporal distribution of photosynthetic photon flux density (PPFD) and leaf photosynthetic rate (A) and compared these with strawberry fruit yield in a greenhouse. This method enabled successful estimation of spatiotemporal variability in PPFD and A with relative root mean square errors of 4.4% and 11.0%, respectively. PPFD, captured at ca. 2\u00a0m resolution, varied diurnally and seasonally based on sun position and external light intensity. A showed less spatial variability, because it is reduced by physical and physiological mechanisms in the leaves at excessive leaf temperatures and becomes saturated at high PPFD. Yield spatial variability was better explained by A than by PPFD. The association between A and yield weakened over the cultivation period (R2 declined from 46% in winter to 12% in spring), thus suggesting that, over the cultivation period, factors such as photoassimilate availability replaced A as the primary limiting factor. The proposed method can be directly applied to other types of greenhouses, and the findings may facilitate spatiotemporal optimization in crop production, improving precision greenhouse agriculture.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11119-022-09933-z", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9672432", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9454354", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7702128", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6824970", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6821872", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1135929", 
        "issn": [
          "1385-2256", 
          "1573-1618"
        ], 
        "name": "Precision Agriculture", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "photosynthetic photon flux density", 
      "photosynthesis model", 
      "high photosynthetic photon flux density", 
      "strawberry fruit yield", 
      "photon flux density", 
      "photoassimilate availability", 
      "leaf photosynthesis", 
      "photosynthetic rate", 
      "leaf temperature", 
      "fruit yield", 
      "cultivation period", 
      "higher crop yields", 
      "physiological mechanisms", 
      "photosynthesis", 
      "crop yield", 
      "crop production", 
      "greenhouse agriculture", 
      "greenhouse", 
      "multipoint analysis", 
      "light intensity", 
      "spatiotemporal differences", 
      "spatial variability", 
      "less spatial variability", 
      "types of greenhouses", 
      "spatiotemporal distribution", 
      "leaves", 
      "hemispherical photography", 
      "relative root", 
      "yield", 
      "agriculture", 
      "ca. 2", 
      "roots", 
      "variability", 
      "spatiotemporal variability", 
      "mechanism", 
      "availability", 
      "external light intensity", 
      "production", 
      "light", 
      "factors", 
      "flux density", 
      "dynamics", 
      "square error", 
      "analysis", 
      "distribution", 
      "association", 
      "types", 
      "period", 
      "findings", 
      "differences", 
      "density", 
      "resolution", 
      "position", 
      "incident light", 
      "rate", 
      "model", 
      "sun position", 
      "intensity", 
      "estimation", 
      "method", 
      "temperature", 
      "successful estimation", 
      "photography", 
      "optimization", 
      "error", 
      "images", 
      "hemispheric images", 
      "spatiotemporal optimization"
    ], 
    "name": "Spatiotemporally variable incident light, leaf photosynthesis, and yield across a greenhouse: fine-scale hemispherical photography and a photosynthesis model", 
    "pagination": "1-25", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149358820"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11119-022-09933-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11119-022-09933-z", 
      "https://app.dimensions.ai/details/publication/pub.1149358820"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_948.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11119-022-09933-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11119-022-09933-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11119-022-09933-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11119-022-09933-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11119-022-09933-z'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      99 URIs      82 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11119-022-09933-z schema:about anzsrc-for:07
2 anzsrc-for:0703
3 schema:author N06d4e8b023ce4fa48a0b1b949b062ce8
4 schema:citation sg:pub.10.1007/978-1-4612-6024-0
5 sg:pub.10.1007/978-94-017-7291-4
6 sg:pub.10.1007/978-94-017-7291-4_2
7 sg:pub.10.1007/978-94-024-1098-3_2
8 sg:pub.10.1007/bf00195076
9 sg:pub.10.1007/bf00386231
10 sg:pub.10.1007/s11119-012-9274-5
11 sg:pub.10.1038/s41592-019-0582-9
12 sg:pub.10.1051/forest:19890593
13 schema:datePublished 2022-07-09
14 schema:datePublishedReg 2022-07-09
15 schema:description Although greenhouse agriculture can generate high crop yields, they vary due to spatiotemporal differences in incident light and photosynthesis. To elucidate these dynamics, multipoint analysis of hemispheric images and a photosynthesis model were used to visualize the spatiotemporal distribution of photosynthetic photon flux density (PPFD) and leaf photosynthetic rate (A) and compared these with strawberry fruit yield in a greenhouse. This method enabled successful estimation of spatiotemporal variability in PPFD and A with relative root mean square errors of 4.4% and 11.0%, respectively. PPFD, captured at ca. 2 m resolution, varied diurnally and seasonally based on sun position and external light intensity. A showed less spatial variability, because it is reduced by physical and physiological mechanisms in the leaves at excessive leaf temperatures and becomes saturated at high PPFD. Yield spatial variability was better explained by A than by PPFD. The association between A and yield weakened over the cultivation period (R2 declined from 46% in winter to 12% in spring), thus suggesting that, over the cultivation period, factors such as photoassimilate availability replaced A as the primary limiting factor. The proposed method can be directly applied to other types of greenhouses, and the findings may facilitate spatiotemporal optimization in crop production, improving precision greenhouse agriculture.
16 schema:genre article
17 schema:isAccessibleForFree true
18 schema:isPartOf sg:journal.1135929
19 schema:keywords agriculture
20 analysis
21 association
22 availability
23 ca. 2
24 crop production
25 crop yield
26 cultivation period
27 density
28 differences
29 distribution
30 dynamics
31 error
32 estimation
33 external light intensity
34 factors
35 findings
36 flux density
37 fruit yield
38 greenhouse
39 greenhouse agriculture
40 hemispheric images
41 hemispherical photography
42 high photosynthetic photon flux density
43 higher crop yields
44 images
45 incident light
46 intensity
47 leaf photosynthesis
48 leaf temperature
49 leaves
50 less spatial variability
51 light
52 light intensity
53 mechanism
54 method
55 model
56 multipoint analysis
57 optimization
58 period
59 photoassimilate availability
60 photography
61 photon flux density
62 photosynthesis
63 photosynthesis model
64 photosynthetic photon flux density
65 photosynthetic rate
66 physiological mechanisms
67 position
68 production
69 rate
70 relative root
71 resolution
72 roots
73 spatial variability
74 spatiotemporal differences
75 spatiotemporal distribution
76 spatiotemporal optimization
77 spatiotemporal variability
78 square error
79 strawberry fruit yield
80 successful estimation
81 sun position
82 temperature
83 types
84 types of greenhouses
85 variability
86 yield
87 schema:name Spatiotemporally variable incident light, leaf photosynthesis, and yield across a greenhouse: fine-scale hemispherical photography and a photosynthesis model
88 schema:pagination 1-25
89 schema:productId N41733ee48b3442758400c8daeb597389
90 N90276702172f4986a7a1fed9cd01a057
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149358820
92 https://doi.org/10.1007/s11119-022-09933-z
93 schema:sdDatePublished 2022-09-02T16:08
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N267dcdcbcd104f21bf7bc0f63ca858aa
96 schema:url https://doi.org/10.1007/s11119-022-09933-z
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N06d4e8b023ce4fa48a0b1b949b062ce8 rdf:first sg:person.015210713101.15
101 rdf:rest N56dd602d4b814289929e0c9f859aa7ab
102 N1e68c455f2f54565b079a2431327b5d8 rdf:first sg:person.016407453061.54
103 rdf:rest rdf:nil
104 N267dcdcbcd104f21bf7bc0f63ca858aa schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N41733ee48b3442758400c8daeb597389 schema:name doi
107 schema:value 10.1007/s11119-022-09933-z
108 rdf:type schema:PropertyValue
109 N56dd602d4b814289929e0c9f859aa7ab rdf:first sg:person.012613301505.59
110 rdf:rest N914e27ac1cbe44a683b6d016cfe0bb9c
111 N90276702172f4986a7a1fed9cd01a057 schema:name dimensions_id
112 schema:value pub.1149358820
113 rdf:type schema:PropertyValue
114 N914e27ac1cbe44a683b6d016cfe0bb9c rdf:first sg:person.015526327241.05
115 rdf:rest N1e68c455f2f54565b079a2431327b5d8
116 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
117 schema:name Agricultural and Veterinary Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0703 schema:inDefinedTermSet anzsrc-for:
120 schema:name Crop and Pasture Production
121 rdf:type schema:DefinedTerm
122 sg:grant.6821872 http://pending.schema.org/fundedItem sg:pub.10.1007/s11119-022-09933-z
123 rdf:type schema:MonetaryGrant
124 sg:grant.6824970 http://pending.schema.org/fundedItem sg:pub.10.1007/s11119-022-09933-z
125 rdf:type schema:MonetaryGrant
126 sg:grant.7702128 http://pending.schema.org/fundedItem sg:pub.10.1007/s11119-022-09933-z
127 rdf:type schema:MonetaryGrant
128 sg:grant.9454354 http://pending.schema.org/fundedItem sg:pub.10.1007/s11119-022-09933-z
129 rdf:type schema:MonetaryGrant
130 sg:grant.9672432 http://pending.schema.org/fundedItem sg:pub.10.1007/s11119-022-09933-z
131 rdf:type schema:MonetaryGrant
132 sg:journal.1135929 schema:issn 1385-2256
133 1573-1618
134 schema:name Precision Agriculture
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.012613301505.59 schema:affiliation grid-institutes:grid.177174.3
138 schema:familyName Yasutake
139 schema:givenName Daisuke
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012613301505.59
141 rdf:type schema:Person
142 sg:person.015210713101.15 schema:affiliation grid-institutes:grid.416835.d
143 schema:familyName Kimura
144 schema:givenName Kensuke
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210713101.15
146 rdf:type schema:Person
147 sg:person.015526327241.05 schema:affiliation grid-institutes:grid.177174.3
148 schema:familyName Koikawa
149 schema:givenName Kota
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015526327241.05
151 rdf:type schema:Person
152 sg:person.016407453061.54 schema:affiliation grid-institutes:grid.278276.e
153 schema:familyName Kitano
154 schema:givenName Masaharu
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016407453061.54
156 rdf:type schema:Person
157 sg:pub.10.1007/978-1-4612-6024-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014657181
158 https://doi.org/10.1007/978-1-4612-6024-0
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/978-94-017-7291-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045553748
161 https://doi.org/10.1007/978-94-017-7291-4
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/978-94-017-7291-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038591167
164 https://doi.org/10.1007/978-94-017-7291-4_2
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/978-94-024-1098-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085406245
167 https://doi.org/10.1007/978-94-024-1098-3_2
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/bf00195076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040108392
170 https://doi.org/10.1007/bf00195076
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/bf00386231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032536189
173 https://doi.org/10.1007/bf00386231
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s11119-012-9274-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020655667
176 https://doi.org/10.1007/s11119-012-9274-5
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/s41592-019-0582-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121388327
179 https://doi.org/10.1038/s41592-019-0582-9
180 rdf:type schema:CreativeWork
181 sg:pub.10.1051/forest:19890593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056968660
182 https://doi.org/10.1051/forest:19890593
183 rdf:type schema:CreativeWork
184 grid-institutes:grid.177174.3 schema:alternateName Faculty of Agriculture, Kyushu University, Fukuoka, Japan
185 Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
186 schema:name Faculty of Agriculture, Kyushu University, Fukuoka, Japan
187 Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
188 rdf:type schema:Organization
189 grid-institutes:grid.278276.e schema:alternateName IoP Collaborative Creation Center, Kochi University, Kochi, Japan
190 schema:name Faculty of Agriculture, Kyushu University, Fukuoka, Japan
191 IoP Collaborative Creation Center, Kochi University, Kochi, Japan
192 rdf:type schema:Organization
193 grid-institutes:grid.416835.d schema:alternateName Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, 305-8604, Tsukuba, Ibaraki, Japan
194 schema:name Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, 305-8604, Tsukuba, Ibaraki, Japan
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...