A coupled atomization-spray drift model as online support tool for boom spray applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-14

AUTHORS

Carlos A. Renaudo, Diego E. Bertin, Verónica Bucalá

ABSTRACT

The effectiveness of agrochemical products strongly depends on the capability of the atomized droplets to reach the target site in the desired amount. Spray drift is the movement of droplets downwind of the target area, and its minimization is a growing concern to ensure operator health, protect the environment, achieve efficient crop protection and transform the spraying of phytosanitary products into a sustainable activity. In this contribution, a coupled atomization-spray drift model suitable for different types of nozzles is developed and validated against experimental data. Particularly, the article focuses on providing a simple simulation tool, based on a minimum number of input data that are easily accessable to predict the ground deposition spray drift of a nozzle. It was found that the atomized droplets size distribution can be accurately predicted just as a function of the median volumetric diameter, which was successfully estimated as a function of spray pressure, nozzle nominal flowrate and spray angle (commonly known data). Besides, the proposed model, based on bivariate probability density functions, is able to accurately represent different physical phenomena using a low number of calculations. Its implementation is possible using low-resource computing systems as required for sprayer on-board software tools. More... »

PAGES

1-27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11119-022-09923-1

DOI

http://dx.doi.org/10.1007/s11119-022-09923-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149472117


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Crop and Pasture Production", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Planta Piloto de Ingenier\u00eda Qu\u00edmica \u2013 PLAPIQUI (UNS-CONICET), Bah\u00eda Blanca, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.502049.a", 
          "name": [
            "Departamento de Ingenier\u00eda Qu\u00edmica, Universidad Nacional del Sur (UNS), Bah\u00eda Blanca, Argentina", 
            "Planta Piloto de Ingenier\u00eda Qu\u00edmica \u2013 PLAPIQUI (UNS-CONICET), Bah\u00eda Blanca, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Renaudo", 
        "givenName": "Carlos A.", 
        "id": "sg:person.010370262227.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010370262227.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Planta Piloto de Ingenier\u00eda Qu\u00edmica \u2013 PLAPIQUI (UNS-CONICET), Bah\u00eda Blanca, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.502049.a", 
          "name": [
            "Departamento de Ingenier\u00eda Qu\u00edmica, Universidad Nacional del Sur (UNS), Bah\u00eda Blanca, Argentina", 
            "Planta Piloto de Ingenier\u00eda Qu\u00edmica \u2013 PLAPIQUI (UNS-CONICET), Bah\u00eda Blanca, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertin", 
        "givenName": "Diego E.", 
        "id": "sg:person.011207620024.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207620024.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Planta Piloto de Ingenier\u00eda Qu\u00edmica \u2013 PLAPIQUI (UNS-CONICET), Bah\u00eda Blanca, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.502049.a", 
          "name": [
            "Departamento de Ingenier\u00eda Qu\u00edmica, Universidad Nacional del Sur (UNS), Bah\u00eda Blanca, Argentina", 
            "Planta Piloto de Ingenier\u00eda Qu\u00edmica \u2013 PLAPIQUI (UNS-CONICET), Bah\u00eda Blanca, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bucal\u00e1", 
        "givenName": "Ver\u00f3nica", 
        "id": "sg:person.01266115244.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266115244.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-981-287-212-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021103514", 
          "https://doi.org/10.1007/978-981-287-212-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-60282-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091999639", 
          "https://doi.org/10.1007/978-3-319-60282-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005234329622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016800624", 
          "https://doi.org/10.1023/a:1005234329622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7264-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043339390", 
          "https://doi.org/10.1007/978-1-4419-7264-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4465-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032054705", 
          "https://doi.org/10.1007/978-1-4757-4465-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-75118-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036053415", 
          "https://doi.org/10.1007/978-3-642-75118-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-14", 
    "datePublishedReg": "2022-07-14", 
    "description": "The effectiveness of agrochemical products strongly depends on the capability of the atomized droplets to reach the target site in the desired amount. Spray drift is the movement of droplets downwind of the target area, and its minimization is a growing concern to ensure operator health, protect the environment, achieve efficient crop protection and transform the spraying of phytosanitary products into a sustainable activity. In this contribution, a coupled atomization-spray drift model suitable for different types of nozzles is developed and validated against experimental data. Particularly, the article focuses on providing a simple simulation tool, based on a minimum number of input data that are easily accessable to predict the ground deposition spray drift of a nozzle. It was found that the atomized droplets size distribution can be accurately predicted just as a function of the median volumetric diameter, which was successfully estimated as a function of spray pressure, nozzle nominal flowrate and spray angle (commonly known data). Besides, the proposed model, based on bivariate probability density functions, is able to accurately represent different physical phenomena using a low number of calculations. Its implementation is possible using low-resource computing systems as required for sprayer on-board software tools.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11119-022-09923-1", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135929", 
        "issn": [
          "1385-2256", 
          "1573-1618"
        ], 
        "name": "Precision Agriculture", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "computing systems", 
      "software tools", 
      "simple simulation tool", 
      "online support tool", 
      "support tool", 
      "input data", 
      "simulation tool", 
      "minimum number", 
      "tool", 
      "target area", 
      "implementation", 
      "operator health", 
      "capability", 
      "model", 
      "different types", 
      "environment", 
      "probability density function", 
      "data", 
      "applications", 
      "different physical phenomena", 
      "minimization", 
      "effectiveness", 
      "physical phenomena", 
      "system", 
      "number", 
      "density function", 
      "bivariate probability density function", 
      "drift model", 
      "function", 
      "drift", 
      "phytosanitary products", 
      "amount", 
      "concern", 
      "protection", 
      "article", 
      "movement", 
      "low number", 
      "area", 
      "contribution", 
      "products", 
      "types", 
      "median volumetric diameter", 
      "droplet size distribution", 
      "crop protection", 
      "nominal flowrate", 
      "spray angle", 
      "spray pressure", 
      "agrochemical products", 
      "experimental data", 
      "distribution", 
      "volumetric diameter", 
      "spray drift", 
      "nozzle", 
      "size distribution", 
      "calculations", 
      "angle", 
      "sprayer", 
      "phenomenon", 
      "flowrate", 
      "activity", 
      "droplets", 
      "spraying", 
      "spray application", 
      "downwind", 
      "sustainable activities", 
      "diameter", 
      "health", 
      "sites", 
      "pressure", 
      "efficient crop protection", 
      "target site"
    ], 
    "name": "A coupled atomization-spray drift model as online support tool for boom spray applications", 
    "pagination": "1-27", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149472117"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11119-022-09923-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11119-022-09923-1", 
      "https://app.dimensions.ai/details/publication/pub.1149472117"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_946.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11119-022-09923-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11119-022-09923-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11119-022-09923-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11119-022-09923-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11119-022-09923-1'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      98 URIs      84 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11119-022-09923-1 schema:about anzsrc-for:07
2 anzsrc-for:0703
3 schema:author Nbd729af3e58a45e3bdfe7e002734b802
4 schema:citation sg:pub.10.1007/978-1-4419-7264-4
5 sg:pub.10.1007/978-1-4757-4465-1
6 sg:pub.10.1007/978-3-319-60282-0
7 sg:pub.10.1007/978-3-642-75118-9
8 sg:pub.10.1007/978-981-287-212-8
9 sg:pub.10.1023/a:1005234329622
10 schema:datePublished 2022-07-14
11 schema:datePublishedReg 2022-07-14
12 schema:description The effectiveness of agrochemical products strongly depends on the capability of the atomized droplets to reach the target site in the desired amount. Spray drift is the movement of droplets downwind of the target area, and its minimization is a growing concern to ensure operator health, protect the environment, achieve efficient crop protection and transform the spraying of phytosanitary products into a sustainable activity. In this contribution, a coupled atomization-spray drift model suitable for different types of nozzles is developed and validated against experimental data. Particularly, the article focuses on providing a simple simulation tool, based on a minimum number of input data that are easily accessable to predict the ground deposition spray drift of a nozzle. It was found that the atomized droplets size distribution can be accurately predicted just as a function of the median volumetric diameter, which was successfully estimated as a function of spray pressure, nozzle nominal flowrate and spray angle (commonly known data). Besides, the proposed model, based on bivariate probability density functions, is able to accurately represent different physical phenomena using a low number of calculations. Its implementation is possible using low-resource computing systems as required for sprayer on-board software tools.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf sg:journal.1135929
16 schema:keywords activity
17 agrochemical products
18 amount
19 angle
20 applications
21 area
22 article
23 bivariate probability density function
24 calculations
25 capability
26 computing systems
27 concern
28 contribution
29 crop protection
30 data
31 density function
32 diameter
33 different physical phenomena
34 different types
35 distribution
36 downwind
37 drift
38 drift model
39 droplet size distribution
40 droplets
41 effectiveness
42 efficient crop protection
43 environment
44 experimental data
45 flowrate
46 function
47 health
48 implementation
49 input data
50 low number
51 median volumetric diameter
52 minimization
53 minimum number
54 model
55 movement
56 nominal flowrate
57 nozzle
58 number
59 online support tool
60 operator health
61 phenomenon
62 physical phenomena
63 phytosanitary products
64 pressure
65 probability density function
66 products
67 protection
68 simple simulation tool
69 simulation tool
70 sites
71 size distribution
72 software tools
73 spray angle
74 spray application
75 spray drift
76 spray pressure
77 sprayer
78 spraying
79 support tool
80 sustainable activities
81 system
82 target area
83 target site
84 tool
85 types
86 volumetric diameter
87 schema:name A coupled atomization-spray drift model as online support tool for boom spray applications
88 schema:pagination 1-27
89 schema:productId N335aaceb6a764cdd88bcd1484dc42df8
90 Nc056b8afa85f4ba384568e393a57a10d
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149472117
92 https://doi.org/10.1007/s11119-022-09923-1
93 schema:sdDatePublished 2022-09-02T16:07
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N7cc1041a7adf420f8e695d878c28e41b
96 schema:url https://doi.org/10.1007/s11119-022-09923-1
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N28a49ae967b045b4882f3c13d50c0155 rdf:first sg:person.01266115244.62
101 rdf:rest rdf:nil
102 N335aaceb6a764cdd88bcd1484dc42df8 schema:name dimensions_id
103 schema:value pub.1149472117
104 rdf:type schema:PropertyValue
105 N7cc1041a7adf420f8e695d878c28e41b schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Nb82ebbb3ced3473f82691b8819340fb4 rdf:first sg:person.011207620024.51
108 rdf:rest N28a49ae967b045b4882f3c13d50c0155
109 Nbd729af3e58a45e3bdfe7e002734b802 rdf:first sg:person.010370262227.66
110 rdf:rest Nb82ebbb3ced3473f82691b8819340fb4
111 Nc056b8afa85f4ba384568e393a57a10d schema:name doi
112 schema:value 10.1007/s11119-022-09923-1
113 rdf:type schema:PropertyValue
114 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
115 schema:name Agricultural and Veterinary Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0703 schema:inDefinedTermSet anzsrc-for:
118 schema:name Crop and Pasture Production
119 rdf:type schema:DefinedTerm
120 sg:journal.1135929 schema:issn 1385-2256
121 1573-1618
122 schema:name Precision Agriculture
123 schema:publisher Springer Nature
124 rdf:type schema:Periodical
125 sg:person.010370262227.66 schema:affiliation grid-institutes:grid.502049.a
126 schema:familyName Renaudo
127 schema:givenName Carlos A.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010370262227.66
129 rdf:type schema:Person
130 sg:person.011207620024.51 schema:affiliation grid-institutes:grid.502049.a
131 schema:familyName Bertin
132 schema:givenName Diego E.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207620024.51
134 rdf:type schema:Person
135 sg:person.01266115244.62 schema:affiliation grid-institutes:grid.502049.a
136 schema:familyName Bucalá
137 schema:givenName Verónica
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266115244.62
139 rdf:type schema:Person
140 sg:pub.10.1007/978-1-4419-7264-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043339390
141 https://doi.org/10.1007/978-1-4419-7264-4
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/978-1-4757-4465-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032054705
144 https://doi.org/10.1007/978-1-4757-4465-1
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/978-3-319-60282-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091999639
147 https://doi.org/10.1007/978-3-319-60282-0
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/978-3-642-75118-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036053415
150 https://doi.org/10.1007/978-3-642-75118-9
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/978-981-287-212-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021103514
153 https://doi.org/10.1007/978-981-287-212-8
154 rdf:type schema:CreativeWork
155 sg:pub.10.1023/a:1005234329622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016800624
156 https://doi.org/10.1023/a:1005234329622
157 rdf:type schema:CreativeWork
158 grid-institutes:grid.502049.a schema:alternateName Planta Piloto de Ingeniería Química – PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
159 schema:name Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
160 Planta Piloto de Ingeniería Química – PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...