An artificial neural network model for estimating Mentha crop biomass yield using Landsat 8 OLI View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

Mohammad Saleem Khan, Manoj Semwal, Ashok Sharma, Rajesh Kumar Verma

ABSTRACT

Yield forecasting is essential for management of the food and agriculture economic growth of a country. Artificial Neural Network (ANN) based models have been used widely to make precise and realistic forecasts, especially for the nonlinear and complicated problems like crop yield prediction, biomass change detection and crop evapo-transpiration examination. In the present study, various parameters viz. spectral bands of Landsat 8 OLI (Operational Land Imager) satellite data and derived spectral indices along with field inventory data were evaluated for Mentha crop biomass estimation using ANN technique of Multilayer Perceptron. The estimated biomass showed a good relationship (R2 = 0.762 and root mean square error (RMSE) = 2.74 t/ha) with field-measured biomass. More... »

PAGES

1-16

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11119-019-09655-9

DOI

http://dx.doi.org/10.1007/s11119-019-09655-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113170588


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central Institute of Medicinal and Aromatic Plants", 
          "id": "https://www.grid.ac/institutes/grid.417631.6", 
          "name": [
            "Information and Communication Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O-CIMAP, Kukrail Picnic Spot Road, 226015, Lucknow, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "Mohammad Saleem", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Scientific and Innovative Research", 
          "id": "https://www.grid.ac/institutes/grid.469887.c", 
          "name": [
            "Information and Communication Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O-CIMAP, Kukrail Picnic Spot Road, 226015, Lucknow, India", 
            "Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semwal", 
        "givenName": "Manoj", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Scientific and Innovative Research", 
          "id": "https://www.grid.ac/institutes/grid.469887.c", 
          "name": [
            "Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India", 
            "Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Ashok", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Scientific and Innovative Research", 
          "id": "https://www.grid.ac/institutes/grid.469887.c", 
          "name": [
            "Agronomy and Soil Science Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India", 
            "Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verma", 
        "givenName": "Rajesh Kumar", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.rse.2013.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001149054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03000364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003543185", 
          "https://doi.org/10.1007/bf03000364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03000364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003543185", 
          "https://doi.org/10.1007/bf03000364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02757259509532298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003552517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02942689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010298017", 
          "https://doi.org/10.1007/bf02942689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03650340.2010.528407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016313220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(79)90013-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018726315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(79)90013-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018726315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2013.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021119434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-5877(05)80004-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021478710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(88)90106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022508161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(88)90106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022508161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0103-84782013005000080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026757574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1300/j044v05n03_05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031015922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(02)00096-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031931019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14358/pers.74.10.1249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035020985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(94)90134-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036317833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(94)90134-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036317833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-8524(96)00159-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039832091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-037x.1998.tb00378.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041979065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2006.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052117525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0143116031000150068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058294407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj2007.0362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068995912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1936256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069660313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/2469-4134.1000200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090776481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/igarss.2002.1026867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094203493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2017.1365390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103668892"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "Yield forecasting is essential for management of the food and agriculture economic growth of a country. Artificial Neural Network (ANN) based models have been used widely to make precise and realistic forecasts, especially for the nonlinear and complicated problems like crop yield prediction, biomass change detection and crop evapo-transpiration examination. In the present study, various parameters viz. spectral bands of Landsat 8 OLI (Operational Land Imager) satellite data and derived spectral indices along with field inventory data were evaluated for Mentha crop biomass estimation using ANN technique of Multilayer Perceptron. The estimated biomass showed a good relationship (R2 = 0.762 and root mean square error (RMSE) = 2.74 t/ha) with field-measured biomass.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11119-019-09655-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135929", 
        "issn": [
          "1385-2256", 
          "1573-1618"
        ], 
        "name": "Precision Agriculture", 
        "type": "Periodical"
      }
    ], 
    "name": "An artificial neural network model for estimating Mentha crop biomass yield using Landsat 8 OLI", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0c35aac8bb8c585b911c5952e1d6f576f6583380d0282ad584405761d4892290"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11119-019-09655-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113170588"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11119-019-09655-9", 
      "https://app.dimensions.ai/details/publication/pub.1113170588"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130792_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11119-019-09655-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11119-019-09655-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11119-019-09655-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11119-019-09655-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11119-019-09655-9'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      47 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11119-019-09655-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfbd6c5c6f0494b9f9fe1a9b9697237fb
4 schema:citation sg:pub.10.1007/bf02942689
5 sg:pub.10.1007/bf03000364
6 https://doi.org/10.1016/0034-4257(79)90013-0
7 https://doi.org/10.1016/0034-4257(88)90106-x
8 https://doi.org/10.1016/0034-4257(94)90134-1
9 https://doi.org/10.1016/j.agrformet.2013.01.007
10 https://doi.org/10.1016/j.ecolmodel.2006.09.022
11 https://doi.org/10.1016/j.rse.2013.02.029
12 https://doi.org/10.1016/s0034-4257(02)00096-2
13 https://doi.org/10.1016/s0167-5877(05)80004-2
14 https://doi.org/10.1016/s0960-8524(96)00159-9
15 https://doi.org/10.1080/0143116031000150068
16 https://doi.org/10.1080/01431161.2017.1365390
17 https://doi.org/10.1080/02757259509532298
18 https://doi.org/10.1080/03650340.2010.528407
19 https://doi.org/10.1109/igarss.2002.1026867
20 https://doi.org/10.1111/j.1439-037x.1998.tb00378.x
21 https://doi.org/10.1300/j044v05n03_05
22 https://doi.org/10.14358/pers.74.10.1249
23 https://doi.org/10.1590/s0103-84782013005000080
24 https://doi.org/10.2134/agronj2007.0362
25 https://doi.org/10.2307/1936256
26 https://doi.org/10.4172/2469-4134.1000200
27 schema:datePublished 2019-04-01
28 schema:datePublishedReg 2019-04-01
29 schema:description Yield forecasting is essential for management of the food and agriculture economic growth of a country. Artificial Neural Network (ANN) based models have been used widely to make precise and realistic forecasts, especially for the nonlinear and complicated problems like crop yield prediction, biomass change detection and crop evapo-transpiration examination. In the present study, various parameters viz. spectral bands of Landsat 8 OLI (Operational Land Imager) satellite data and derived spectral indices along with field inventory data were evaluated for Mentha crop biomass estimation using ANN technique of Multilayer Perceptron. The estimated biomass showed a good relationship (R2 = 0.762 and root mean square error (RMSE) = 2.74 t/ha) with field-measured biomass.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf sg:journal.1135929
34 schema:name An artificial neural network model for estimating Mentha crop biomass yield using Landsat 8 OLI
35 schema:pagination 1-16
36 schema:productId N0730e61487e5410ca728cb23ef07cd31
37 Nc193f60e10ab4efc96c846288e3b7b77
38 Nfc6ecb68c0e9495eacf031a3b9caa742
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113170588
40 https://doi.org/10.1007/s11119-019-09655-9
41 schema:sdDatePublished 2019-04-11T13:48
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nc85a63cb4ed84df3abfe1d2491342b8f
44 schema:url https://link.springer.com/10.1007%2Fs11119-019-09655-9
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N0730e61487e5410ca728cb23ef07cd31 schema:name doi
49 schema:value 10.1007/s11119-019-09655-9
50 rdf:type schema:PropertyValue
51 N2a3862e2d6654c36bf1e776d2c28eb4f schema:affiliation https://www.grid.ac/institutes/grid.469887.c
52 schema:familyName Verma
53 schema:givenName Rajesh Kumar
54 rdf:type schema:Person
55 N40c19d5d7c66479cb5fd75d8eb1586ef rdf:first N2a3862e2d6654c36bf1e776d2c28eb4f
56 rdf:rest rdf:nil
57 N9bbc416754b4466bbbbb40eac0f5cc90 schema:affiliation https://www.grid.ac/institutes/grid.469887.c
58 schema:familyName Semwal
59 schema:givenName Manoj
60 rdf:type schema:Person
61 Nb5673d9715dd44a3a66d9ef364196677 schema:affiliation https://www.grid.ac/institutes/grid.469887.c
62 schema:familyName Sharma
63 schema:givenName Ashok
64 rdf:type schema:Person
65 Nb6ae553cd6574f21a716fcc5c01a3b38 schema:affiliation https://www.grid.ac/institutes/grid.417631.6
66 schema:familyName Khan
67 schema:givenName Mohammad Saleem
68 rdf:type schema:Person
69 Nc193f60e10ab4efc96c846288e3b7b77 schema:name dimensions_id
70 schema:value pub.1113170588
71 rdf:type schema:PropertyValue
72 Nc85a63cb4ed84df3abfe1d2491342b8f schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Ne4c93863938b4897856fc8ea632fd681 rdf:first N9bbc416754b4466bbbbb40eac0f5cc90
75 rdf:rest Nfc6256a4b2e1482a989760eb0cb2f25c
76 Nfbd6c5c6f0494b9f9fe1a9b9697237fb rdf:first Nb6ae553cd6574f21a716fcc5c01a3b38
77 rdf:rest Ne4c93863938b4897856fc8ea632fd681
78 Nfc6256a4b2e1482a989760eb0cb2f25c rdf:first Nb5673d9715dd44a3a66d9ef364196677
79 rdf:rest N40c19d5d7c66479cb5fd75d8eb1586ef
80 Nfc6ecb68c0e9495eacf031a3b9caa742 schema:name readcube_id
81 schema:value 0c35aac8bb8c585b911c5952e1d6f576f6583380d0282ad584405761d4892290
82 rdf:type schema:PropertyValue
83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information and Computing Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
87 schema:name Artificial Intelligence and Image Processing
88 rdf:type schema:DefinedTerm
89 sg:journal.1135929 schema:issn 1385-2256
90 1573-1618
91 schema:name Precision Agriculture
92 rdf:type schema:Periodical
93 sg:pub.10.1007/bf02942689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010298017
94 https://doi.org/10.1007/bf02942689
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf03000364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003543185
97 https://doi.org/10.1007/bf03000364
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0034-4257(79)90013-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018726315
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0034-4257(88)90106-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022508161
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0034-4257(94)90134-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036317833
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.agrformet.2013.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021119434
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.ecolmodel.2006.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052117525
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.rse.2013.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001149054
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0034-4257(02)00096-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031931019
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0167-5877(05)80004-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021478710
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0960-8524(96)00159-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039832091
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1080/0143116031000150068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058294407
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1080/01431161.2017.1365390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103668892
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1080/02757259509532298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003552517
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1080/03650340.2010.528407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016313220
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/igarss.2002.1026867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094203493
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1111/j.1439-037x.1998.tb00378.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041979065
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1300/j044v05n03_05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031015922
130 rdf:type schema:CreativeWork
131 https://doi.org/10.14358/pers.74.10.1249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035020985
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1590/s0103-84782013005000080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026757574
134 rdf:type schema:CreativeWork
135 https://doi.org/10.2134/agronj2007.0362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995912
136 rdf:type schema:CreativeWork
137 https://doi.org/10.2307/1936256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069660313
138 rdf:type schema:CreativeWork
139 https://doi.org/10.4172/2469-4134.1000200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090776481
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.417631.6 schema:alternateName Central Institute of Medicinal and Aromatic Plants
142 schema:name Information and Communication Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O-CIMAP, Kukrail Picnic Spot Road, 226015, Lucknow, India
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.469887.c schema:alternateName Academy of Scientific and Innovative Research
145 schema:name Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
146 Agronomy and Soil Science Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India
147 Information and Communication Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O-CIMAP, Kukrail Picnic Spot Road, 226015, Lucknow, India
148 Plant Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, 226015, Lucknow, India
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...