A multi-sensor robotic platform for ground mapping and estimation beyond the visible spectrum View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Annalisa Milella, Giulio Reina, Michael Nielsen

ABSTRACT

Accurate soil mapping is critical for a highly-automated agricultural vehicle to successfully accomplish important tasks including seeding, ploughing, fertilising and controlled traffic, with limited human supervision, ensuring at the same time high safety standards. In this research, a multi-sensor ground mapping and characterisation approach is proposed, whereby data coming from heterogeneous but complementary sensors, mounted on-board an unmanned rover, are combined to generate a multi-layer map of the environment and specifically of the supporting ground. The sensor suite comprises both exteroceptive and proprioceptive devices. Exteroceptive sensors include a stereo camera, a visible and near-infrared camera and a thermal imager. Proprioceptive data consist of the vertical acceleration of the vehicle sprung mass as acquired by an inertial measurement unit. The paper details the steps for the integration of the different sensor data into a unique multi-layer map and discusses a set of exteroceptive and proprioceptive features for soil characterisation and change detection. Experimental results obtained with an all-terrain vehicle operating on different ground surfaces are presented. It is shown that the proposed technologies could be potentially used to develop all-terrain self-driving systems in agriculture. In addition, multi-modal soil maps could be useful to feed farm management systems that would present to the user various soil layers incorporating colour, geometric, spectral and mechanical properties. More... »

PAGES

423-444

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11119-018-9605-2

DOI

http://dx.doi.org/10.1007/s11119-018-9605-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106907591


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Research Council", 
          "id": "https://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council, via Amendola 122/D, 70126, Bari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milella", 
        "givenName": "Annalisa", 
        "id": "sg:person.010132247351.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010132247351.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salento", 
          "id": "https://www.grid.ac/institutes/grid.9906.6", 
          "name": [
            "Department of Engineering for Innovation, University of Salento, via Arnesano, 73100, Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reina", 
        "givenName": "Giulio", 
        "id": "sg:person.010173007300.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010173007300.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Danish Technological Institute", 
          "id": "https://www.grid.ac/institutes/grid.423962.8", 
          "name": [
            "Danish Technological Institute (DTI), Odense, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nielsen", 
        "givenName": "Michael", 
        "id": "sg:person.014171261273.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171261273.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10514-007-9077-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000656061", 
          "https://doi.org/10.1007/s10514-007-9077-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10514-007-9077-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000656061", 
          "https://doi.org/10.1007/s10514-007-9077-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2015.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002468481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-015-9398-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003066167", 
          "https://doi.org/10.1007/s11119-015-9398-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-07488-7_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006316365", 
          "https://doi.org/10.1007/978-3-319-07488-7_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2007.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012310691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2008.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013272424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rob.21512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013700524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-20904-3_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021552833", 
          "https://doi.org/10.1007/978-3-319-20904-3_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-00196-3_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027619095", 
          "https://doi.org/10.1007/978-3-642-00196-3_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(98)00036-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033201665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2010.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036513656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s120912405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037002098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1044470406", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84882-509-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044470406", 
          "https://doi.org/10.1007/978-1-84882-509-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84882-509-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044470406", 
          "https://doi.org/10.1007/978-1-84882-509-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2012.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052088217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/41.1-2.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059416373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2005.855994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rob.21728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085710936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s2040470017000152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085733559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystemseng.2017.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091384433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/igarss.2010.5651553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093457133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivs.2011.5940405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093700772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icra.2015.7139748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094241984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094805794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icra.2017.7989447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095283012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21611/qirt.2014.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099099243"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Accurate soil mapping is critical for a highly-automated agricultural vehicle to successfully accomplish important tasks including seeding, ploughing, fertilising and controlled traffic, with limited human supervision, ensuring at the same time high safety standards. In this research, a multi-sensor ground mapping and characterisation approach is proposed, whereby data coming from heterogeneous but complementary sensors, mounted on-board an unmanned rover, are combined to generate a multi-layer map of the environment and specifically of the supporting ground. The sensor suite comprises both exteroceptive and proprioceptive devices. Exteroceptive sensors include a stereo camera, a visible and near-infrared camera and a thermal imager. Proprioceptive data consist of the vertical acceleration of the vehicle sprung mass as acquired by an inertial measurement unit. The paper details the steps for the integration of the different sensor data into a unique multi-layer map and discusses a set of exteroceptive and proprioceptive features for soil characterisation and change detection. Experimental results obtained with an all-terrain vehicle operating on different ground surfaces are presented. It is shown that the proposed technologies could be potentially used to develop all-terrain self-driving systems in agriculture. In addition, multi-modal soil maps could be useful to feed farm management systems that would present to the user various soil layers incorporating colour, geometric, spectral and mechanical properties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11119-018-9605-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135929", 
        "issn": [
          "1385-2256", 
          "1573-1618"
        ], 
        "name": "Precision Agriculture", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "A multi-sensor robotic platform for ground mapping and estimation beyond the visible spectrum", 
    "pagination": "423-444", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "769123bc821722b6e781a4e1fc785834ed8d95c0e88806873978537965975ee3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11119-018-9605-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106907591"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11119-018-9605-2", 
      "https://app.dimensions.ai/details/publication/pub.1106907591"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72868_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11119-018-9605-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11119-018-9605-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11119-018-9605-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11119-018-9605-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11119-018-9605-2'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11119-018-9605-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N32256fd10cb94dd6baaae8403e5f9e8e
4 schema:citation sg:pub.10.1007/978-1-84882-509-3
5 sg:pub.10.1007/978-3-319-07488-7_30
6 sg:pub.10.1007/978-3-319-20904-3_18
7 sg:pub.10.1007/978-3-642-00196-3_11
8 sg:pub.10.1007/s10514-007-9077-0
9 sg:pub.10.1007/s11119-015-9398-5
10 https://app.dimensions.ai/details/publication/pub.1044470406
11 https://doi.org/10.1002/rob.21512
12 https://doi.org/10.1002/rob.21728
13 https://doi.org/10.1016/j.agrformet.2008.03.005
14 https://doi.org/10.1016/j.biosystemseng.2017.06.025
15 https://doi.org/10.1016/j.compag.2007.07.007
16 https://doi.org/10.1016/j.compag.2015.02.001
17 https://doi.org/10.1016/j.geoderma.2010.12.018
18 https://doi.org/10.1016/j.robot.2012.10.001
19 https://doi.org/10.1016/s0031-3203(98)00036-3
20 https://doi.org/10.1017/s2040470017000152
21 https://doi.org/10.1093/biomet/41.1-2.100
22 https://doi.org/10.1109/cvpr.2005.56
23 https://doi.org/10.1109/icra.2015.7139748
24 https://doi.org/10.1109/icra.2017.7989447
25 https://doi.org/10.1109/igarss.2010.5651553
26 https://doi.org/10.1109/ivs.2011.5940405
27 https://doi.org/10.1109/tro.2005.855994
28 https://doi.org/10.21611/qirt.2014.035
29 https://doi.org/10.3390/s120912405
30 schema:datePublished 2019-04
31 schema:datePublishedReg 2019-04-01
32 schema:description Accurate soil mapping is critical for a highly-automated agricultural vehicle to successfully accomplish important tasks including seeding, ploughing, fertilising and controlled traffic, with limited human supervision, ensuring at the same time high safety standards. In this research, a multi-sensor ground mapping and characterisation approach is proposed, whereby data coming from heterogeneous but complementary sensors, mounted on-board an unmanned rover, are combined to generate a multi-layer map of the environment and specifically of the supporting ground. The sensor suite comprises both exteroceptive and proprioceptive devices. Exteroceptive sensors include a stereo camera, a visible and near-infrared camera and a thermal imager. Proprioceptive data consist of the vertical acceleration of the vehicle sprung mass as acquired by an inertial measurement unit. The paper details the steps for the integration of the different sensor data into a unique multi-layer map and discusses a set of exteroceptive and proprioceptive features for soil characterisation and change detection. Experimental results obtained with an all-terrain vehicle operating on different ground surfaces are presented. It is shown that the proposed technologies could be potentially used to develop all-terrain self-driving systems in agriculture. In addition, multi-modal soil maps could be useful to feed farm management systems that would present to the user various soil layers incorporating colour, geometric, spectral and mechanical properties.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N8925ea73c7a54de88b0207582c20b17e
37 Naecb8b0d53874b99b5138dd428fd8042
38 sg:journal.1135929
39 schema:name A multi-sensor robotic platform for ground mapping and estimation beyond the visible spectrum
40 schema:pagination 423-444
41 schema:productId N4746996d49794c8ab1fe2f37ccc2eaba
42 N74a4b9553eb64a9ea9a909e8562d7add
43 N7cd8caa173d945d7a712166153f2aa2d
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106907591
45 https://doi.org/10.1007/s11119-018-9605-2
46 schema:sdDatePublished 2019-04-11T12:55
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N4d23a5c8f3464007b68148849cb30146
49 schema:url https://link.springer.com/10.1007%2Fs11119-018-9605-2
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N32256fd10cb94dd6baaae8403e5f9e8e rdf:first sg:person.010132247351.99
54 rdf:rest Naff1051f75fc4b24bc9c1e4c69959d7c
55 N3a998eb899cb4373a0f7c1c5a7db06bc rdf:first sg:person.014171261273.09
56 rdf:rest rdf:nil
57 N4746996d49794c8ab1fe2f37ccc2eaba schema:name doi
58 schema:value 10.1007/s11119-018-9605-2
59 rdf:type schema:PropertyValue
60 N4d23a5c8f3464007b68148849cb30146 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N74a4b9553eb64a9ea9a909e8562d7add schema:name readcube_id
63 schema:value 769123bc821722b6e781a4e1fc785834ed8d95c0e88806873978537965975ee3
64 rdf:type schema:PropertyValue
65 N7cd8caa173d945d7a712166153f2aa2d schema:name dimensions_id
66 schema:value pub.1106907591
67 rdf:type schema:PropertyValue
68 N8925ea73c7a54de88b0207582c20b17e schema:volumeNumber 20
69 rdf:type schema:PublicationVolume
70 Naecb8b0d53874b99b5138dd428fd8042 schema:issueNumber 2
71 rdf:type schema:PublicationIssue
72 Naff1051f75fc4b24bc9c1e4c69959d7c rdf:first sg:person.010173007300.02
73 rdf:rest N3a998eb899cb4373a0f7c1c5a7db06bc
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
80 sg:journal.1135929 schema:issn 1385-2256
81 1573-1618
82 schema:name Precision Agriculture
83 rdf:type schema:Periodical
84 sg:person.010132247351.99 schema:affiliation https://www.grid.ac/institutes/grid.5326.2
85 schema:familyName Milella
86 schema:givenName Annalisa
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010132247351.99
88 rdf:type schema:Person
89 sg:person.010173007300.02 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
90 schema:familyName Reina
91 schema:givenName Giulio
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010173007300.02
93 rdf:type schema:Person
94 sg:person.014171261273.09 schema:affiliation https://www.grid.ac/institutes/grid.423962.8
95 schema:familyName Nielsen
96 schema:givenName Michael
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171261273.09
98 rdf:type schema:Person
99 sg:pub.10.1007/978-1-84882-509-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044470406
100 https://doi.org/10.1007/978-1-84882-509-3
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/978-3-319-07488-7_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006316365
103 https://doi.org/10.1007/978-3-319-07488-7_30
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-319-20904-3_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021552833
106 https://doi.org/10.1007/978-3-319-20904-3_18
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-3-642-00196-3_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027619095
109 https://doi.org/10.1007/978-3-642-00196-3_11
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10514-007-9077-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000656061
112 https://doi.org/10.1007/s10514-007-9077-0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11119-015-9398-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003066167
115 https://doi.org/10.1007/s11119-015-9398-5
116 rdf:type schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1044470406 schema:CreativeWork
118 https://doi.org/10.1002/rob.21512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013700524
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/rob.21728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085710936
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.agrformet.2008.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013272424
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.biosystemseng.2017.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091384433
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.compag.2007.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012310691
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.compag.2015.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002468481
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.geoderma.2010.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036513656
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.robot.2012.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052088217
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0031-3203(98)00036-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033201665
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1017/s2040470017000152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085733559
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/biomet/41.1-2.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059416373
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/cvpr.2005.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094805794
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/icra.2015.7139748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094241984
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/icra.2017.7989447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095283012
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/igarss.2010.5651553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093457133
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/ivs.2011.5940405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093700772
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tro.2005.855994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784578
151 rdf:type schema:CreativeWork
152 https://doi.org/10.21611/qirt.2014.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099099243
153 rdf:type schema:CreativeWork
154 https://doi.org/10.3390/s120912405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037002098
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.423962.8 schema:alternateName Danish Technological Institute
157 schema:name Danish Technological Institute (DTI), Odense, Denmark
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.5326.2 schema:alternateName National Research Council
160 schema:name Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council, via Amendola 122/D, 70126, Bari, Italy
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.9906.6 schema:alternateName University of Salento
163 schema:name Department of Engineering for Innovation, University of Salento, via Arnesano, 73100, Lecce, Italy
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...