Vineyard zone delineation by cluster classification based on annual grape and vine characteristics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10-18

AUTHORS

Ana Belén González-Fernández, José Ramón Rodríguez-Pérez, Enoc Sanz Ablanedo, Celestino Ordoñez

ABSTRACT

This study describes a method for vineyard zone delineation based on spatial interpolation of data on annual monitoring of grape and vine growth from 2007 to 2012 for four commercial vines (Cabernet Sauvignon, Mencía, Merlot and Tempranillo) located in the Bierzo Denomination of Origen (NW Spain). A sampled grid of 20 × 29 m (14 vines/ha) was defined for each vineyard and data were collected for ten soil, six grape composition, three grape production and five vine vigour variables. Continuous maps of each variable were created by spatial interpolation from the sampled points. Several zone delineations were obtained by clustering—using the iterative self-organizing data analysis (ISODATA) algorithm—according to different combinations of the studied variables. The resulting zone delineations were analysed (ANOVA) in order to determine whether the variables in the two cluster classifications for two or three zones were statistically different from each other. The selected delineation was the cluster that included total soluble solids, titratable acidity, total phenolic content, pH, mean cluster weight and length of the internode in two zones. The results point to the feasibility of this approach to vineyard zone delineation. Further research is necessary to confirm the effectiveness of this approach for other locations and evaluate the usefulness of introducing new grape and vine variables. More... »

PAGES

525-573

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11119-016-9475-4

DOI

http://dx.doi.org/10.1007/s11119-016-9475-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006586931


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0706", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Horticultural Production", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Geomatics Engineering Research Group, University of Le\u00f3n, Av. Astorga s/n, 24401, Ponferrada, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Geomatics Engineering Research Group, University of Le\u00f3n, Av. Astorga s/n, 24401, Ponferrada, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez-Fern\u00e1ndez", 
        "givenName": "Ana Bel\u00e9n", 
        "id": "sg:person.013727366654.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013727366654.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geomatics Engineering Research Group, University of Le\u00f3n, Av. Astorga s/n, 24401, Ponferrada, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Geomatics Engineering Research Group, University of Le\u00f3n, Av. Astorga s/n, 24401, Ponferrada, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodr\u00edguez-P\u00e9rez", 
        "givenName": "Jos\u00e9 Ram\u00f3n", 
        "id": "sg:person.016624005375.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624005375.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geomatics Engineering Research Group, University of Le\u00f3n, Av. Astorga s/n, 24401, Ponferrada, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Geomatics Engineering Research Group, University of Le\u00f3n, Av. Astorga s/n, 24401, Ponferrada, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ablanedo", 
        "givenName": "Enoc Sanz", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mining Exploitation and Prospecting, University of Oviedo, C/Gonzalo Guti\u00e9rrez Quir\u00f3s, s/n., 33600, Mieres, Oviedo, Spain", 
          "id": "http://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Mining Exploitation and Prospecting, University of Oviedo, C/Gonzalo Guti\u00e9rrez Quir\u00f3s, s/n., 33600, Mieres, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ordo\u00f1ez", 
        "givenName": "Celestino", 
        "id": "sg:person.01202030713.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202030713.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11119-011-9254-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020761897", 
          "https://doi.org/10.1007/s11119-011-9254-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-011-9219-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026009021", 
          "https://doi.org/10.1007/s11119-011-9219-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009925919134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002153303", 
          "https://doi.org/10.1023/a:1009925919134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-013-9328-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029186362", 
          "https://doi.org/10.1007/s11119-013-9328-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-012-9282-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002956090", 
          "https://doi.org/10.1007/s11119-012-9282-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-014-9354-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035507599", 
          "https://doi.org/10.1007/s11119-014-9354-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-008-9073-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004375659", 
          "https://doi.org/10.1007/s11119-008-9073-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-012-9268-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021222730", 
          "https://doi.org/10.1007/s11119-012-9268-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10-18", 
    "datePublishedReg": "2016-10-18", 
    "description": "Abstract This study describes a method for vineyard zone delineation based on spatial interpolation of data on annual monitoring of grape and vine growth from 2007 to 2012 for four commercial vines (Cabernet Sauvignon, Menc\u00eda, Merlot and Tempranillo) located in the Bierzo Denomination of Origen (NW Spain). A sampled grid of 20\u00a0\u00d7\u00a029\u00a0m (14 vines/ha) was defined for each vineyard and data were collected for ten soil, six grape composition, three grape production and five vine vigour variables. Continuous maps of each variable were created by spatial interpolation from the sampled points. Several zone delineations were obtained by clustering\u2014using the iterative self-organizing data analysis (ISODATA) algorithm\u2014according to different combinations of the studied variables. The resulting zone delineations were analysed (ANOVA) in order to determine whether the variables in the two cluster classifications for two or three zones were statistically different from each other. The selected delineation was the cluster that included total soluble solids, titratable acidity, total phenolic content, pH, mean cluster weight and length of the internode in two zones. The results point to the feasibility of this approach to vineyard zone delineation. Further research is necessary to confirm the effectiveness of this approach for other locations and evaluate the usefulness of introducing new grape and vine variables.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11119-016-9475-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135929", 
        "issn": [
          "1385-2256", 
          "1573-1618"
        ], 
        "name": "Precision Agriculture", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "zone delineation", 
      "mean cluster weight", 
      "total soluble solids", 
      "vine growth", 
      "grape production", 
      "vine characteristics", 
      "grape composition", 
      "new grape", 
      "cluster weight", 
      "vigor variables", 
      "soluble solids", 
      "grapes", 
      "annual monitoring", 
      "spatial interpolation", 
      "titratable acidity", 
      "studied variables", 
      "cluster classification", 
      "vineyards", 
      "vines", 
      "soil", 
      "internodes", 
      "production", 
      "different combinations", 
      "phenolic content", 
      "zone", 
      "growth", 
      "total phenolic content", 
      "acidity", 
      "further research", 
      "variables", 
      "content", 
      "weight", 
      "composition", 
      "delineation", 
      "location", 
      "combination", 
      "length", 
      "maps", 
      "research", 
      "monitoring", 
      "data", 
      "characteristics", 
      "Abstract", 
      "study", 
      "approach", 
      "results", 
      "solids", 
      "effectiveness", 
      "order", 
      "data analysis", 
      "continuous maps", 
      "analysis", 
      "classification", 
      "feasibility", 
      "usefulness", 
      "sampled grid", 
      "method", 
      "interpolation", 
      "denominations", 
      "point", 
      "clusters", 
      "grid", 
      "Origen", 
      "iterative self-organizing data analysis", 
      "vineyard zone delineation", 
      "commercial vines", 
      "Bierzo Denomination", 
      "vine vigour variables", 
      "self-organizing data analysis", 
      "vine variables", 
      "annual grape"
    ], 
    "name": "Vineyard zone delineation by cluster classification based on annual grape and vine characteristics", 
    "pagination": "525-573", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006586931"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11119-016-9475-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11119-016-9475-4", 
      "https://app.dimensions.ai/details/publication/pub.1006586931"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_716.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11119-016-9475-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11119-016-9475-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11119-016-9475-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11119-016-9475-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11119-016-9475-4'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      22 PREDICATES      104 URIs      88 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11119-016-9475-4 schema:about anzsrc-for:07
2 anzsrc-for:0706
3 schema:author N780df9b1af164ef9b7556bfb418374b6
4 schema:citation sg:pub.10.1007/s11119-008-9073-1
5 sg:pub.10.1007/s11119-011-9219-4
6 sg:pub.10.1007/s11119-011-9254-1
7 sg:pub.10.1007/s11119-012-9268-3
8 sg:pub.10.1007/s11119-012-9282-5
9 sg:pub.10.1007/s11119-013-9328-3
10 sg:pub.10.1007/s11119-014-9354-9
11 sg:pub.10.1023/a:1009925919134
12 schema:datePublished 2016-10-18
13 schema:datePublishedReg 2016-10-18
14 schema:description Abstract This study describes a method for vineyard zone delineation based on spatial interpolation of data on annual monitoring of grape and vine growth from 2007 to 2012 for four commercial vines (Cabernet Sauvignon, Mencía, Merlot and Tempranillo) located in the Bierzo Denomination of Origen (NW Spain). A sampled grid of 20 × 29 m (14 vines/ha) was defined for each vineyard and data were collected for ten soil, six grape composition, three grape production and five vine vigour variables. Continuous maps of each variable were created by spatial interpolation from the sampled points. Several zone delineations were obtained by clustering—using the iterative self-organizing data analysis (ISODATA) algorithm—according to different combinations of the studied variables. The resulting zone delineations were analysed (ANOVA) in order to determine whether the variables in the two cluster classifications for two or three zones were statistically different from each other. The selected delineation was the cluster that included total soluble solids, titratable acidity, total phenolic content, pH, mean cluster weight and length of the internode in two zones. The results point to the feasibility of this approach to vineyard zone delineation. Further research is necessary to confirm the effectiveness of this approach for other locations and evaluate the usefulness of introducing new grape and vine variables.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N96dcba75d7c94c19874c5f6b61935b12
19 Neb45b987c2be407fa4a84cb7301298e2
20 sg:journal.1135929
21 schema:keywords Abstract
22 Bierzo Denomination
23 Origen
24 acidity
25 analysis
26 annual grape
27 annual monitoring
28 approach
29 characteristics
30 classification
31 cluster classification
32 cluster weight
33 clusters
34 combination
35 commercial vines
36 composition
37 content
38 continuous maps
39 data
40 data analysis
41 delineation
42 denominations
43 different combinations
44 effectiveness
45 feasibility
46 further research
47 grape composition
48 grape production
49 grapes
50 grid
51 growth
52 internodes
53 interpolation
54 iterative self-organizing data analysis
55 length
56 location
57 maps
58 mean cluster weight
59 method
60 monitoring
61 new grape
62 order
63 phenolic content
64 point
65 production
66 research
67 results
68 sampled grid
69 self-organizing data analysis
70 soil
71 solids
72 soluble solids
73 spatial interpolation
74 studied variables
75 study
76 titratable acidity
77 total phenolic content
78 total soluble solids
79 usefulness
80 variables
81 vigor variables
82 vine characteristics
83 vine growth
84 vine variables
85 vine vigour variables
86 vines
87 vineyard zone delineation
88 vineyards
89 weight
90 zone
91 zone delineation
92 schema:name Vineyard zone delineation by cluster classification based on annual grape and vine characteristics
93 schema:pagination 525-573
94 schema:productId N0a69c9de84fe4528b960f6db2a1574eb
95 Na803fe01ecc34ea3888eae1c4678e410
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006586931
97 https://doi.org/10.1007/s11119-016-9475-4
98 schema:sdDatePublished 2021-11-01T18:28
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N01f1213988f64c39beb6085915fc14bb
101 schema:url https://doi.org/10.1007/s11119-016-9475-4
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N01f1213988f64c39beb6085915fc14bb schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N0a69c9de84fe4528b960f6db2a1574eb schema:name doi
108 schema:value 10.1007/s11119-016-9475-4
109 rdf:type schema:PropertyValue
110 N497f77bf395c40a5baecfe0f4dece222 rdf:first sg:person.01202030713.84
111 rdf:rest rdf:nil
112 N6644bbfe38624cd3892f5ba0ae55412f rdf:first sg:person.016624005375.90
113 rdf:rest N7d3e304f88824bc59bde108467cb1caf
114 N780df9b1af164ef9b7556bfb418374b6 rdf:first sg:person.013727366654.35
115 rdf:rest N6644bbfe38624cd3892f5ba0ae55412f
116 N7d3e304f88824bc59bde108467cb1caf rdf:first Nd978f067ce5046e5b1303d76d1332b93
117 rdf:rest N497f77bf395c40a5baecfe0f4dece222
118 N96dcba75d7c94c19874c5f6b61935b12 schema:volumeNumber 18
119 rdf:type schema:PublicationVolume
120 Na803fe01ecc34ea3888eae1c4678e410 schema:name dimensions_id
121 schema:value pub.1006586931
122 rdf:type schema:PropertyValue
123 Nd978f067ce5046e5b1303d76d1332b93 schema:affiliation grid-institutes:grid.4807.b
124 schema:familyName Ablanedo
125 schema:givenName Enoc Sanz
126 rdf:type schema:Person
127 Neb45b987c2be407fa4a84cb7301298e2 schema:issueNumber 4
128 rdf:type schema:PublicationIssue
129 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
130 schema:name Agricultural and Veterinary Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0706 schema:inDefinedTermSet anzsrc-for:
133 schema:name Horticultural Production
134 rdf:type schema:DefinedTerm
135 sg:journal.1135929 schema:issn 1385-2256
136 1573-1618
137 schema:name Precision Agriculture
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.01202030713.84 schema:affiliation grid-institutes:grid.10863.3c
141 schema:familyName Ordoñez
142 schema:givenName Celestino
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202030713.84
144 rdf:type schema:Person
145 sg:person.013727366654.35 schema:affiliation grid-institutes:grid.4807.b
146 schema:familyName González-Fernández
147 schema:givenName Ana Belén
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013727366654.35
149 rdf:type schema:Person
150 sg:person.016624005375.90 schema:affiliation grid-institutes:grid.4807.b
151 schema:familyName Rodríguez-Pérez
152 schema:givenName José Ramón
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624005375.90
154 rdf:type schema:Person
155 sg:pub.10.1007/s11119-008-9073-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004375659
156 https://doi.org/10.1007/s11119-008-9073-1
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s11119-011-9219-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026009021
159 https://doi.org/10.1007/s11119-011-9219-4
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11119-011-9254-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020761897
162 https://doi.org/10.1007/s11119-011-9254-1
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11119-012-9268-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021222730
165 https://doi.org/10.1007/s11119-012-9268-3
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s11119-012-9282-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002956090
168 https://doi.org/10.1007/s11119-012-9282-5
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11119-013-9328-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029186362
171 https://doi.org/10.1007/s11119-013-9328-3
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s11119-014-9354-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035507599
174 https://doi.org/10.1007/s11119-014-9354-9
175 rdf:type schema:CreativeWork
176 sg:pub.10.1023/a:1009925919134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002153303
177 https://doi.org/10.1023/a:1009925919134
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.10863.3c schema:alternateName Department of Mining Exploitation and Prospecting, University of Oviedo, C/Gonzalo Gutiérrez Quirós, s/n., 33600, Mieres, Oviedo, Spain
180 schema:name Department of Mining Exploitation and Prospecting, University of Oviedo, C/Gonzalo Gutiérrez Quirós, s/n., 33600, Mieres, Oviedo, Spain
181 rdf:type schema:Organization
182 grid-institutes:grid.4807.b schema:alternateName Geomatics Engineering Research Group, University of León, Av. Astorga s/n, 24401, Ponferrada, León, Spain
183 schema:name Geomatics Engineering Research Group, University of León, Av. Astorga s/n, 24401, Ponferrada, León, Spain
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...