Investigating geostatistical methods to model within-field yield variability of cranberries for potential management zones View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06

AUTHORS

R. Kerry, P. Goovaerts, D. Giménez, P. Oudemans, E. Muñiz

ABSTRACT

Cranberry harvesting methods give only one yield value per field making characterization of within-field variation, the usual first step in precision farming, difficult. Time-consuming berry count yield and fruit rot estimations are the best “ground truth” indication of yield variation within fields. Correlations and coincidence of binary classifications based on less expensive methods such as enhanced vegetation index (EVI) from imagery, and area to point (AtoP) kriging of useable, poor quality and trash yields were compared with this “ground truth”. In general AtoP kriged values gave higher correlations and kappa statistic values with berry counts and fruit rot than EVI. Geostatistical disaggregation of per field yield totals using AtoP kriging with EVI as an external drift (AtoPKED) was also investigated. Factorial kriging was used to separate the several scales of variation in “ground truth” and EVI data and determine which ones were most spatially coherent/manageable and which related best to the AtoP kriged data. The spatial trend component of pre-harvest berry counts and AtoP kriging of yields both gave a good initial definition of spatially coherent, relatively permanent management zones. They were related to topography and depth of water table in the soil which are key factors governing cranberry yield. AtoP kriging or AtoPKED are recommended for defining management zones as they are less expensive than berry counts. The value of AtoP kriging to precision farmers for other crops to map soils at the farm scale with some imagery and just one bulked soil sample per field or use nutrient levels associated with each polygon of traditional soil survey maps is discussed in the conclusions. More... »

PAGES

247-273

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11119-015-9408-7

DOI

http://dx.doi.org/10.1007/s11119-015-9408-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041740424


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brigham Young University", 
          "id": "https://www.grid.ac/institutes/grid.253294.b", 
          "name": [
            "Department of Geography, Brigham Young University, 690 SWKT, Provo, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kerry", 
        "givenName": "R.", 
        "id": "sg:person.014421606421.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421606421.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedware", 
          "id": "https://www.grid.ac/institutes/grid.281273.d", 
          "name": [
            "BioMedware Inc., 121 W. Washington St., 4th Floor-TBC, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goovaerts", 
        "givenName": "P.", 
        "id": "sg:person.01043766424.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043766424.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gim\u00e9nez", 
        "givenName": "D.", 
        "id": "sg:person.01111717202.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111717202.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Plant Biology & Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oudemans", 
        "givenName": "P.", 
        "id": "sg:person.01147475472.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147475472.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Natural Resources Conservation Service", 
          "id": "https://www.grid.ac/institutes/grid.482950.2", 
          "name": [
            "USDA-Natural Resources Conservation Service, 220 Davidson Ave, Somerset, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mu\u00f1iz", 
        "givenName": "E.", 
        "id": "sg:person.011726507400.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726507400.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.geoderma.2011.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002573208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-008-9073-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004375659", 
          "https://doi.org/10.1007/s11119-008-9073-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0308-521x(02)00005-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004998532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2009.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005639544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311600210542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007725594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-012-9261-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010724863", 
          "https://doi.org/10.1007/s11119-012-9261-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-7061(98)00023-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010864603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2005.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013923957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-007-9031-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021779343", 
          "https://doi.org/10.1007/s11119-007-9031-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/ea97156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022367512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-010-9160-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025335767", 
          "https://doi.org/10.1007/s11119-010-9160-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-008-9053-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029481313", 
          "https://doi.org/10.1007/s11119-008-9053-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2010.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030036357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2007.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030246649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(02)00096-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031931019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2004.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035540461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-008-9057-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039110610", 
          "https://doi.org/10.1007/s11119-008-9057-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/001316446002000104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039619716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/001316446002000104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039619716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1699(02)00119-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040548454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1699(02)00119-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040548454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2322-3_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041465839", 
          "https://doi.org/10.1007/978-90-481-2322-3_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2322-3_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041465839", 
          "https://doi.org/10.1007/978-90-481-2322-3_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11004-007-9129-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042185591", 
          "https://doi.org/10.1007/s11004-007-9129-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11004-007-9129-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042185591", 
          "https://doi.org/10.1007/s11004-007-9129-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.2004.tb01135.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044063629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.2004.tb01135.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044063629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-010-9176-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044689168", 
          "https://doi.org/10.1007/s11119-010-9176-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-010-9176-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044689168", 
          "https://doi.org/10.1007/s11119-010-9176-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2009.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045624084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/pdis-92-4-0616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060093581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/pdis-92-4-0616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060093581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj2005.0049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068995284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj2007.0070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068995778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5424/sjar/2012102-370-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072841878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077859974", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/1995.site-specificmanagement.c2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088349160"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06", 
    "datePublishedReg": "2016-06-01", 
    "description": "Cranberry harvesting methods give only one yield value per field making characterization of within-field variation, the usual first step in precision farming, difficult. Time-consuming berry count yield and fruit rot estimations are the best \u201cground truth\u201d indication of yield variation within fields. Correlations and coincidence of binary classifications based on less expensive methods such as enhanced vegetation index (EVI) from imagery, and area to point (AtoP) kriging of useable, poor quality and trash yields were compared with this \u201cground truth\u201d. In general AtoP kriged values gave higher correlations and kappa statistic values with berry counts and fruit rot than EVI. Geostatistical disaggregation of per field yield totals using AtoP kriging with EVI as an external drift (AtoPKED) was also investigated. Factorial kriging was used to separate the several scales of variation in \u201cground truth\u201d and EVI data and determine which ones were most spatially coherent/manageable and which related best to the AtoP kriged data. The spatial trend component of pre-harvest berry counts and AtoP kriging of yields both gave a good initial definition of spatially coherent, relatively permanent management zones. They were related to topography and depth of water table in the soil which are key factors governing cranberry yield. AtoP kriging or AtoPKED are recommended for defining management zones as they are less expensive than berry counts. The value of AtoP kriging to precision farmers for other crops to map soils at the farm scale with some imagery and just one bulked soil sample per field or use nutrient levels associated with each polygon of traditional soil survey maps is discussed in the conclusions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11119-015-9408-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2611262", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1135929", 
        "issn": [
          "1385-2256", 
          "1573-1618"
        ], 
        "name": "Precision Agriculture", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Investigating geostatistical methods to model within-field yield variability of cranberries for potential management zones", 
    "pagination": "247-273", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c6d53c73c30ca5c6d878dc1323d81653ba8344caee263725824e1338313d46fc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11119-015-9408-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041740424"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11119-015-9408-7", 
      "https://app.dimensions.ai/details/publication/pub.1041740424"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11119-015-9408-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11119-015-9408-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11119-015-9408-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11119-015-9408-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11119-015-9408-7'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11119-015-9408-7 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author N987bed2f419a44c38e344c5c193ca372
4 schema:citation sg:pub.10.1007/978-90-481-2322-3_24
5 sg:pub.10.1007/s11004-007-9129-1
6 sg:pub.10.1007/s11119-007-9031-3
7 sg:pub.10.1007/s11119-008-9053-5
8 sg:pub.10.1007/s11119-008-9057-1
9 sg:pub.10.1007/s11119-008-9073-1
10 sg:pub.10.1007/s11119-010-9160-y
11 sg:pub.10.1007/s11119-010-9176-3
12 sg:pub.10.1007/s11119-012-9261-x
13 https://app.dimensions.ai/details/publication/pub.1077859974
14 https://doi.org/10.1016/j.compag.2004.03.002
15 https://doi.org/10.1016/j.compag.2009.05.003
16 https://doi.org/10.1016/j.fcr.2010.10.006
17 https://doi.org/10.1016/j.geoderma.2005.03.007
18 https://doi.org/10.1016/j.geoderma.2007.11.003
19 https://doi.org/10.1016/j.geoderma.2009.08.014
20 https://doi.org/10.1016/j.geoderma.2011.10.007
21 https://doi.org/10.1016/s0016-7061(98)00023-8
22 https://doi.org/10.1016/s0034-4257(02)00096-2
23 https://doi.org/10.1016/s0168-1699(02)00119-9
24 https://doi.org/10.1016/s0308-521x(02)00005-7
25 https://doi.org/10.1071/ea97156
26 https://doi.org/10.1080/014311600210542
27 https://doi.org/10.1094/pdis-92-4-0616
28 https://doi.org/10.1111/j.1538-4632.2004.tb01135.x
29 https://doi.org/10.1177/001316446002000104
30 https://doi.org/10.2134/1995.site-specificmanagement.c2
31 https://doi.org/10.2134/agronj2005.0049
32 https://doi.org/10.2134/agronj2007.0070
33 https://doi.org/10.2307/2529310
34 https://doi.org/10.5424/sjar/2012102-370-11
35 schema:datePublished 2016-06
36 schema:datePublishedReg 2016-06-01
37 schema:description Cranberry harvesting methods give only one yield value per field making characterization of within-field variation, the usual first step in precision farming, difficult. Time-consuming berry count yield and fruit rot estimations are the best “ground truth” indication of yield variation within fields. Correlations and coincidence of binary classifications based on less expensive methods such as enhanced vegetation index (EVI) from imagery, and area to point (AtoP) kriging of useable, poor quality and trash yields were compared with this “ground truth”. In general AtoP kriged values gave higher correlations and kappa statistic values with berry counts and fruit rot than EVI. Geostatistical disaggregation of per field yield totals using AtoP kriging with EVI as an external drift (AtoPKED) was also investigated. Factorial kriging was used to separate the several scales of variation in “ground truth” and EVI data and determine which ones were most spatially coherent/manageable and which related best to the AtoP kriged data. The spatial trend component of pre-harvest berry counts and AtoP kriging of yields both gave a good initial definition of spatially coherent, relatively permanent management zones. They were related to topography and depth of water table in the soil which are key factors governing cranberry yield. AtoP kriging or AtoPKED are recommended for defining management zones as they are less expensive than berry counts. The value of AtoP kriging to precision farmers for other crops to map soils at the farm scale with some imagery and just one bulked soil sample per field or use nutrient levels associated with each polygon of traditional soil survey maps is discussed in the conclusions.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N658864026cf24a059e7d037e8e5509fc
42 Nb42613f3d32b4669b01b491c91ad93fd
43 sg:journal.1135929
44 schema:name Investigating geostatistical methods to model within-field yield variability of cranberries for potential management zones
45 schema:pagination 247-273
46 schema:productId N36883b7e18f34be798cdd2f087ce6870
47 N969aefb6321548cd88d0933f8f655827
48 Nf027b2a415cf4601a8dac1db12ea46a2
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041740424
50 https://doi.org/10.1007/s11119-015-9408-7
51 schema:sdDatePublished 2019-04-10T15:54
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N401c67c9c3d64f4f980a8eaa01ee01f5
54 schema:url http://link.springer.com/10.1007%2Fs11119-015-9408-7
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N110932d9d2784143ab346eef3ee63ec4 rdf:first sg:person.011726507400.27
59 rdf:rest rdf:nil
60 N30d7d5c654a84725942bb5575c88b495 rdf:first sg:person.01111717202.41
61 rdf:rest N67593970271d43b0aaab5fedf727c591
62 N36883b7e18f34be798cdd2f087ce6870 schema:name doi
63 schema:value 10.1007/s11119-015-9408-7
64 rdf:type schema:PropertyValue
65 N401c67c9c3d64f4f980a8eaa01ee01f5 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N658864026cf24a059e7d037e8e5509fc schema:volumeNumber 17
68 rdf:type schema:PublicationVolume
69 N67593970271d43b0aaab5fedf727c591 rdf:first sg:person.01147475472.40
70 rdf:rest N110932d9d2784143ab346eef3ee63ec4
71 N6d950ef34daa416ca2685eca80e5ad8f rdf:first sg:person.01043766424.63
72 rdf:rest N30d7d5c654a84725942bb5575c88b495
73 N969aefb6321548cd88d0933f8f655827 schema:name dimensions_id
74 schema:value pub.1041740424
75 rdf:type schema:PropertyValue
76 N987bed2f419a44c38e344c5c193ca372 rdf:first sg:person.014421606421.19
77 rdf:rest N6d950ef34daa416ca2685eca80e5ad8f
78 Nb42613f3d32b4669b01b491c91ad93fd schema:issueNumber 3
79 rdf:type schema:PublicationIssue
80 Nf027b2a415cf4601a8dac1db12ea46a2 schema:name readcube_id
81 schema:value c6d53c73c30ca5c6d878dc1323d81653ba8344caee263725824e1338313d46fc
82 rdf:type schema:PropertyValue
83 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
84 schema:name Environmental Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
87 schema:name Soil Sciences
88 rdf:type schema:DefinedTerm
89 sg:grant.2611262 http://pending.schema.org/fundedItem sg:pub.10.1007/s11119-015-9408-7
90 rdf:type schema:MonetaryGrant
91 sg:journal.1135929 schema:issn 1385-2256
92 1573-1618
93 schema:name Precision Agriculture
94 rdf:type schema:Periodical
95 sg:person.01043766424.63 schema:affiliation https://www.grid.ac/institutes/grid.281273.d
96 schema:familyName Goovaerts
97 schema:givenName P.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043766424.63
99 rdf:type schema:Person
100 sg:person.01111717202.41 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
101 schema:familyName Giménez
102 schema:givenName D.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111717202.41
104 rdf:type schema:Person
105 sg:person.01147475472.40 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
106 schema:familyName Oudemans
107 schema:givenName P.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147475472.40
109 rdf:type schema:Person
110 sg:person.011726507400.27 schema:affiliation https://www.grid.ac/institutes/grid.482950.2
111 schema:familyName Muñiz
112 schema:givenName E.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726507400.27
114 rdf:type schema:Person
115 sg:person.014421606421.19 schema:affiliation https://www.grid.ac/institutes/grid.253294.b
116 schema:familyName Kerry
117 schema:givenName R.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421606421.19
119 rdf:type schema:Person
120 sg:pub.10.1007/978-90-481-2322-3_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041465839
121 https://doi.org/10.1007/978-90-481-2322-3_24
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11004-007-9129-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042185591
124 https://doi.org/10.1007/s11004-007-9129-1
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11119-007-9031-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021779343
127 https://doi.org/10.1007/s11119-007-9031-3
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11119-008-9053-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029481313
130 https://doi.org/10.1007/s11119-008-9053-5
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11119-008-9057-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039110610
133 https://doi.org/10.1007/s11119-008-9057-1
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11119-008-9073-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004375659
136 https://doi.org/10.1007/s11119-008-9073-1
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s11119-010-9160-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025335767
139 https://doi.org/10.1007/s11119-010-9160-y
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s11119-010-9176-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044689168
142 https://doi.org/10.1007/s11119-010-9176-3
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s11119-012-9261-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010724863
145 https://doi.org/10.1007/s11119-012-9261-x
146 rdf:type schema:CreativeWork
147 https://app.dimensions.ai/details/publication/pub.1077859974 schema:CreativeWork
148 https://doi.org/10.1016/j.compag.2004.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035540461
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.compag.2009.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005639544
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.fcr.2010.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030036357
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.geoderma.2005.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013923957
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.geoderma.2007.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030246649
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.geoderma.2009.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045624084
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.geoderma.2011.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002573208
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0016-7061(98)00023-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010864603
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0034-4257(02)00096-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031931019
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0168-1699(02)00119-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040548454
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0308-521x(02)00005-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004998532
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1071/ea97156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022367512
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1080/014311600210542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007725594
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1094/pdis-92-4-0616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060093581
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1111/j.1538-4632.2004.tb01135.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044063629
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1177/001316446002000104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039619716
179 rdf:type schema:CreativeWork
180 https://doi.org/10.2134/1995.site-specificmanagement.c2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088349160
181 rdf:type schema:CreativeWork
182 https://doi.org/10.2134/agronj2005.0049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995284
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2134/agronj2007.0070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995778
185 rdf:type schema:CreativeWork
186 https://doi.org/10.2307/2529310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974986
187 rdf:type schema:CreativeWork
188 https://doi.org/10.5424/sjar/2012102-370-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072841878
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.253294.b schema:alternateName Brigham Young University
191 schema:name Department of Geography, Brigham Young University, 690 SWKT, Provo, UT, USA
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.281273.d schema:alternateName Biomedware
194 schema:name BioMedware Inc., 121 W. Washington St., 4th Floor-TBC, Ann Arbor, MI, USA
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
197 schema:name Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, USA
198 Department of Plant Biology & Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ, USA
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.482950.2 schema:alternateName Natural Resources Conservation Service
201 schema:name USDA-Natural Resources Conservation Service, 220 Davidson Ave, Somerset, NJ, USA
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...