Evaluation of current and model-based site-specific nitrogen applications on wheat (Triticum aestivum L.) yield and environmental quality View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-10

AUTHORS

Johanna Link, William David Batchelor, Simone Graeff, Wilhelm Claupein

ABSTRACT

Crop growth models have been used in the past to study causes of yield variability and to estimate the economic consequences of variable nitrogen rate prescriptions. In this study, the APOLLO model, which is based on the DSSAT crop growth model family, was implemented to develop optimum site-specific nitrogen management prescriptions for wheat. The nitrogen prescription was targeted to maximize the long-term marginal net return, which includes an economic penalty for leaving excess nitrogen in the root zone at harvest. By using two constraints—yield and environmental quality—it is expected that the simulation can find prescriptions that maximize marginal net return while reducing the amount of nitrogen losses to surface and groundwater sources at the sub-field scale. Overall, the total amount of nitrogen applied in the control and the model-based treatment was about the same. Thus, for yield, environmental aspects and economic aspects no significant differences were identified between both treatments. However, the results indicated that the model-based nitrogen prescription considered the yield variability adequately for most grids, given by an increase in nitrogen use efficiency, and thus enabled the design of nitrogen prescriptions adapted to the nitrogen demand of the plants. The model-based nitrogen strategy helps to optimize the nitrogen application rate within the field over the long-term of about 30 years. To gain further advantages from model-based nitrogen prescriptions, it seems to be useful to additionally update the model with actual information derived for the current growing conditions. More... »

PAGES

251

References to SciGraph publications

  • 1998. The CROPGRO model for grain legumes in UNDERSTANDING OPTIONS FOR AGRICULTURAL PRODUCTION
  • 2000-09. Managing Uncertainty in Site-Specific Management: What is the Best Model? in PRECISION AGRICULTURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11119-008-9068-y

    DOI

    http://dx.doi.org/10.1007/s11119-008-9068-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052194330


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Crop and Pasture Production", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Agricultural and Veterinary Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Hohenheim", 
              "id": "https://www.grid.ac/institutes/grid.9464.f", 
              "name": [
                "Institute of Crop Production and Grassland Research, University of Hohenheim, Fruwirthstr. 23, 70599, Stuttgart, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Link", 
            "givenName": "Johanna", 
            "id": "sg:person.011422462777.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011422462777.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mississippi State University", 
              "id": "https://www.grid.ac/institutes/grid.260120.7", 
              "name": [
                "Agricultural and Biological Engineering, Mississippi State University, 100 Howell Hall, P.O. Box\u00a09632, 39762, Starkville, MS, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Batchelor", 
            "givenName": "William David", 
            "id": "sg:person.010022005423.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010022005423.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Hohenheim", 
              "id": "https://www.grid.ac/institutes/grid.9464.f", 
              "name": [
                "Institute of Crop Production and Grassland Research, University of Hohenheim, Fruwirthstr. 23, 70599, Stuttgart, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Graeff", 
            "givenName": "Simone", 
            "id": "sg:person.012326635416.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012326635416.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Hohenheim", 
              "id": "https://www.grid.ac/institutes/grid.9464.f", 
              "name": [
                "Institute of Crop Production and Grassland Research, University of Hohenheim, Fruwirthstr. 23, 70599, Stuttgart, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Claupein", 
            "givenName": "Wilhelm", 
            "id": "sg:person.01070220027.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070220027.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0016-7061(98)00020-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000263778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1161-0301(02)00107-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001614809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1161-0301(02)00107-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001614809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agsy.2006.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004287022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00103629709369912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024372302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0308-521x(99)00035-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025478291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009984516714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029275893", 
              "https://doi.org/10.1023/a:1009984516714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-4076(94)90038-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030000548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-3624-4_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038789759", 
              "https://doi.org/10.1007/978-94-017-3624-4_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-3180.1974.tb01084.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043209816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0308-521x(00)00063-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051830939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/29380.29864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052942382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.13031/2013.13942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064890689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj1974.00021962006600060005x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068989025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj1997.00021962008900010005x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068993771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj1998.00021962009000020012x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068993938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2000.924679x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068994262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2000.9261140x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068994328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2003.0114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068994763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2003.0275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068994786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2003.0339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068994798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2004.1231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068995175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2004.1572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068995219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2005.0028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068995271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/jeq1996.00472425002500050008x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069005135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2136/sssaj1998.03615995006200050011x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069048690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1244334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069411258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/1997.stateofsitespecific.c15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088349429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/1997.stateofsitespecific.c16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088349430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/1997.stateofsitespecific.c4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088349435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1079/9780851995458.0007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089223981"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-10", 
        "datePublishedReg": "2008-10-01", 
        "description": "Crop growth models have been used in the past to study causes of yield variability and to estimate the economic consequences of variable nitrogen rate prescriptions. In this study, the APOLLO model, which is based on the DSSAT crop growth model family, was implemented to develop optimum site-specific nitrogen management prescriptions for wheat. The nitrogen prescription was targeted to maximize the long-term marginal net return, which includes an economic penalty for leaving excess nitrogen in the root zone at harvest. By using two constraints\u2014yield and environmental quality\u2014it is expected that the simulation can find prescriptions that maximize marginal net return while reducing the amount of nitrogen losses to surface and groundwater sources at the sub-field scale. Overall, the total amount of nitrogen applied in the control and the model-based treatment was about the same. Thus, for yield, environmental aspects and economic aspects no significant differences were identified between both treatments. However, the results indicated that the model-based nitrogen prescription considered the yield variability adequately for most grids, given by an increase in nitrogen use efficiency, and thus enabled the design of nitrogen prescriptions adapted to the nitrogen demand of the plants. The model-based nitrogen strategy helps to optimize the nitrogen application rate within the field over the long-term of about 30 years. To gain further advantages from model-based nitrogen prescriptions, it seems to be useful to additionally update the model with actual information derived for the current growing conditions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11119-008-9068-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135929", 
            "issn": [
              "1385-2256", 
              "1573-1618"
            ], 
            "name": "Precision Agriculture", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Evaluation of current and model-based site-specific nitrogen applications on wheat (Triticum aestivum L.) yield and environmental quality", 
        "pagination": "251", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f89e6ab06a1774fbe0dcb2cf7dc0cdccfaf5063a3a8ac7881522ded643383aa9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11119-008-9068-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052194330"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11119-008-9068-y", 
          "https://app.dimensions.ai/details/publication/pub.1052194330"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000596.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11119-008-9068-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11119-008-9068-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11119-008-9068-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11119-008-9068-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11119-008-9068-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    177 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11119-008-9068-y schema:about anzsrc-for:07
    2 anzsrc-for:0703
    3 schema:author Na38b524a1054443d928d67112a55b464
    4 schema:citation sg:pub.10.1007/978-94-017-3624-4_6
    5 sg:pub.10.1023/a:1009984516714
    6 https://doi.org/10.1016/0304-4076(94)90038-8
    7 https://doi.org/10.1016/j.agsy.2006.02.003
    8 https://doi.org/10.1016/s0016-7061(98)00020-2
    9 https://doi.org/10.1016/s0308-521x(00)00063-9
    10 https://doi.org/10.1016/s0308-521x(99)00035-9
    11 https://doi.org/10.1016/s1161-0301(02)00107-7
    12 https://doi.org/10.1079/9780851995458.0007
    13 https://doi.org/10.1080/00103629709369912
    14 https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
    15 https://doi.org/10.1145/29380.29864
    16 https://doi.org/10.13031/2013.13942
    17 https://doi.org/10.2134/1997.stateofsitespecific.c15
    18 https://doi.org/10.2134/1997.stateofsitespecific.c16
    19 https://doi.org/10.2134/1997.stateofsitespecific.c4
    20 https://doi.org/10.2134/agronj1974.00021962006600060005x
    21 https://doi.org/10.2134/agronj1997.00021962008900010005x
    22 https://doi.org/10.2134/agronj1998.00021962009000020012x
    23 https://doi.org/10.2134/agronj2000.924679x
    24 https://doi.org/10.2134/agronj2000.9261140x
    25 https://doi.org/10.2134/agronj2003.0114
    26 https://doi.org/10.2134/agronj2003.0275
    27 https://doi.org/10.2134/agronj2003.0339
    28 https://doi.org/10.2134/agronj2004.1231
    29 https://doi.org/10.2134/agronj2004.1572
    30 https://doi.org/10.2134/agronj2005.0028
    31 https://doi.org/10.2134/jeq1996.00472425002500050008x
    32 https://doi.org/10.2136/sssaj1998.03615995006200050011x
    33 https://doi.org/10.2307/1244334
    34 schema:datePublished 2008-10
    35 schema:datePublishedReg 2008-10-01
    36 schema:description Crop growth models have been used in the past to study causes of yield variability and to estimate the economic consequences of variable nitrogen rate prescriptions. In this study, the APOLLO model, which is based on the DSSAT crop growth model family, was implemented to develop optimum site-specific nitrogen management prescriptions for wheat. The nitrogen prescription was targeted to maximize the long-term marginal net return, which includes an economic penalty for leaving excess nitrogen in the root zone at harvest. By using two constraints—yield and environmental quality—it is expected that the simulation can find prescriptions that maximize marginal net return while reducing the amount of nitrogen losses to surface and groundwater sources at the sub-field scale. Overall, the total amount of nitrogen applied in the control and the model-based treatment was about the same. Thus, for yield, environmental aspects and economic aspects no significant differences were identified between both treatments. However, the results indicated that the model-based nitrogen prescription considered the yield variability adequately for most grids, given by an increase in nitrogen use efficiency, and thus enabled the design of nitrogen prescriptions adapted to the nitrogen demand of the plants. The model-based nitrogen strategy helps to optimize the nitrogen application rate within the field over the long-term of about 30 years. To gain further advantages from model-based nitrogen prescriptions, it seems to be useful to additionally update the model with actual information derived for the current growing conditions.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N06e3eca6db1b4ca2a9a6061cfba21287
    41 N083c81a6bdc8443883697c874f901695
    42 sg:journal.1135929
    43 schema:name Evaluation of current and model-based site-specific nitrogen applications on wheat (Triticum aestivum L.) yield and environmental quality
    44 schema:pagination 251
    45 schema:productId N0e489ce8728949ecbd419ca29d6c1b82
    46 N2516786d6515451a80b3090ad900845a
    47 N99c1dd349dc8471aa3630786def31c49
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052194330
    49 https://doi.org/10.1007/s11119-008-9068-y
    50 schema:sdDatePublished 2019-04-10T22:46
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N32cd6a5e01a44e038f1b44f731ef1bc6
    53 schema:url http://link.springer.com/10.1007%2Fs11119-008-9068-y
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N06e3eca6db1b4ca2a9a6061cfba21287 schema:issueNumber 5
    58 rdf:type schema:PublicationIssue
    59 N083c81a6bdc8443883697c874f901695 schema:volumeNumber 9
    60 rdf:type schema:PublicationVolume
    61 N0e489ce8728949ecbd419ca29d6c1b82 schema:name readcube_id
    62 schema:value f89e6ab06a1774fbe0dcb2cf7dc0cdccfaf5063a3a8ac7881522ded643383aa9
    63 rdf:type schema:PropertyValue
    64 N2516786d6515451a80b3090ad900845a schema:name dimensions_id
    65 schema:value pub.1052194330
    66 rdf:type schema:PropertyValue
    67 N32cd6a5e01a44e038f1b44f731ef1bc6 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N355500748fe64ac98211563f44405da5 rdf:first sg:person.010022005423.23
    70 rdf:rest N4ddbd02d0bbc4a2590b0c0ef2ec9d06c
    71 N4ddbd02d0bbc4a2590b0c0ef2ec9d06c rdf:first sg:person.012326635416.23
    72 rdf:rest Nbb5cf117e55745c6af35c6c68e56a01f
    73 N99c1dd349dc8471aa3630786def31c49 schema:name doi
    74 schema:value 10.1007/s11119-008-9068-y
    75 rdf:type schema:PropertyValue
    76 Na38b524a1054443d928d67112a55b464 rdf:first sg:person.011422462777.67
    77 rdf:rest N355500748fe64ac98211563f44405da5
    78 Nbb5cf117e55745c6af35c6c68e56a01f rdf:first sg:person.01070220027.79
    79 rdf:rest rdf:nil
    80 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Agricultural and Veterinary Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0703 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Crop and Pasture Production
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1135929 schema:issn 1385-2256
    87 1573-1618
    88 schema:name Precision Agriculture
    89 rdf:type schema:Periodical
    90 sg:person.010022005423.23 schema:affiliation https://www.grid.ac/institutes/grid.260120.7
    91 schema:familyName Batchelor
    92 schema:givenName William David
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010022005423.23
    94 rdf:type schema:Person
    95 sg:person.01070220027.79 schema:affiliation https://www.grid.ac/institutes/grid.9464.f
    96 schema:familyName Claupein
    97 schema:givenName Wilhelm
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070220027.79
    99 rdf:type schema:Person
    100 sg:person.011422462777.67 schema:affiliation https://www.grid.ac/institutes/grid.9464.f
    101 schema:familyName Link
    102 schema:givenName Johanna
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011422462777.67
    104 rdf:type schema:Person
    105 sg:person.012326635416.23 schema:affiliation https://www.grid.ac/institutes/grid.9464.f
    106 schema:familyName Graeff
    107 schema:givenName Simone
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012326635416.23
    109 rdf:type schema:Person
    110 sg:pub.10.1007/978-94-017-3624-4_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038789759
    111 https://doi.org/10.1007/978-94-017-3624-4_6
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1023/a:1009984516714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029275893
    114 https://doi.org/10.1023/a:1009984516714
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/0304-4076(94)90038-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030000548
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.agsy.2006.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004287022
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/s0016-7061(98)00020-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000263778
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/s0308-521x(00)00063-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051830939
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/s0308-521x(99)00035-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025478291
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/s1161-0301(02)00107-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001614809
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1079/9780851995458.0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089223981
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1080/00103629709369912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024372302
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1111/j.1365-3180.1974.tb01084.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043209816
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1145/29380.29864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052942382
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.13031/2013.13942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064890689
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.2134/1997.stateofsitespecific.c15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088349429
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.2134/1997.stateofsitespecific.c16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088349430
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.2134/1997.stateofsitespecific.c4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088349435
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.2134/agronj1974.00021962006600060005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068989025
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.2134/agronj1997.00021962008900010005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068993771
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.2134/agronj1998.00021962009000020012x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068993938
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.2134/agronj2000.924679x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068994262
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.2134/agronj2000.9261140x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068994328
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.2134/agronj2003.0114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068994763
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.2134/agronj2003.0275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068994786
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.2134/agronj2003.0339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068994798
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.2134/agronj2004.1231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995175
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.2134/agronj2004.1572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995219
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.2134/agronj2005.0028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995271
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.2134/jeq1996.00472425002500050008x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069005135
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.2136/sssaj1998.03615995006200050011x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069048690
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.2307/1244334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069411258
    171 rdf:type schema:CreativeWork
    172 https://www.grid.ac/institutes/grid.260120.7 schema:alternateName Mississippi State University
    173 schema:name Agricultural and Biological Engineering, Mississippi State University, 100 Howell Hall, P.O. Box 9632, 39762, Starkville, MS, USA
    174 rdf:type schema:Organization
    175 https://www.grid.ac/institutes/grid.9464.f schema:alternateName University of Hohenheim
    176 schema:name Institute of Crop Production and Grassland Research, University of Hohenheim, Fruwirthstr. 23, 70599, Stuttgart, Germany
    177 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...