Uniform Shapiro-Lopatinski Conditions and Boundary Value Problems on Manifolds with Bounded Geometry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-06

AUTHORS

Nadine Große, Victor Nistor

ABSTRACT

We study the regularity of the solutions of second order boundary value problems on manifolds with boundary and bounded geometry. We first show that the regularity property of a given boundary value problem (P,C) is equivalent to the uniform regularity of the natural family (Px,Cx) of associated boundary value problems in local coordinates. We verify that this property is satisfied for the Dirichlet boundary conditions and strongly elliptic operators via a compactness argument. We then introduce a uniform Shapiro-Lopatinski regularity condition, which is a modification of the classical one, and we prove that it characterizes the boundary value problems that satisfy the usual regularity property. We also show that the natural Robin boundary conditions always satisfy the uniform Shapiro-Lopatinski regularity condition, provided that our operator satisfies the strong Legendre condition. This is achieved by proving that “well-posedness implies regularity” via a modification of the classical “Nirenberg trick”. When combining our regularity results with the Poincaré inequality of (Ammann-Große-Nistor, preprint 2015), one obtains the usual well-posedness results for the classical boundary value problems in the usual scale of Sobolev spaces, thus extending these important, well-known theorems from smooth, bounded domains, to manifolds with boundary and bounded geometry. As we show in several examples, these results do not hold true anymore if one drops the bounded geometry assumption. We also introduce a uniform Agmon condition and show that it is equivalent to the coerciveness. Consequently, we prove a well-posedness result for parabolic equations whose elliptic generator satisfies the uniform Agmon condition. More... »

PAGES

1-41

References to SciGraph publications

Journal

TITLE

Potential Analysis

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11118-019-09774-y

DOI

http://dx.doi.org/10.1007/s11118-019-09774-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112587574


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Mathematisches Institut, Universit\u00e4t Freiburg, 79104, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gro\u00dfe", 
        "givenName": "Nadine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Romanian Academy", 
          "id": "https://www.grid.ac/institutes/grid.418333.e", 
          "name": [
            "Universit\u00e9 de Lorraine, UFR MIM, Ile du Saulcy, CS 50128, 57045, Metz, France", 
            "Institute of Mathematics of the Romanian Academy, PO BOX 1-764, 014700, Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nistor", 
        "givenName": "Victor", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1515/crelle-2012-0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000331462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2015.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002306985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22842-1_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003879523", 
          "https://doi.org/10.1007/978-3-642-22842-1_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2616(200103)223:1<103::aid-mana103>3.0.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004394128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2616(200103)223:1<103::aid-mana103>3.0.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004394128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-016-2664-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010680730", 
          "https://doi.org/10.1007/s00220-016-2664-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1010968636", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65161-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010968636", 
          "https://doi.org/10.1007/978-3-642-65161-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65161-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010968636", 
          "https://doi.org/10.1007/978-3-642-65161-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160080414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014383459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160080414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014383459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-044452833-9.50008-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014516213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02790236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015959182", 
          "https://doi.org/10.1007/bf02790236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02790236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015959182", 
          "https://doi.org/10.1007/bf02790236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19871300127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018795233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/s2-35.2.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022460210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-008-0180-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023766844", 
          "https://doi.org/10.1007/s00205-008-0180-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-008-0180-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023766844", 
          "https://doi.org/10.1007/s00205-008-0180-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-008-0180-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023766844", 
          "https://doi.org/10.1007/s00205-008-0180-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160120405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024459563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160120405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024459563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-49938-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025664356", 
          "https://doi.org/10.1007/978-3-540-49938-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-49938-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025664356", 
          "https://doi.org/10.1007/978-3-540-49938-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1446788700018504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030581579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1446788700018504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030581579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00028-014-0218-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031867569", 
          "https://doi.org/10.1007/s00028-014-0218-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11040-015-9176-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036025391", 
          "https://doi.org/10.1007/s11040-015-9176-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160120305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036719378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160120305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036719378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2009.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037860517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2012.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040293850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/s0161171204212108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040389700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0939-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042881046", 
          "https://doi.org/10.1007/978-3-0348-0939-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5561-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930842", 
          "https://doi.org/10.1007/978-1-4612-5561-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5561-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930842", 
          "https://doi.org/10.1007/978-1-4612-5561-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-06721-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043756981", 
          "https://doi.org/10.1007/978-3-662-06721-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s000230200001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043759107", 
          "https://doi.org/10.1007/s000230200001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-00-02444-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048123900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00028-016-0347-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050796916", 
          "https://doi.org/10.1007/s00028-016-0347-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00028-016-0347-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050796916", 
          "https://doi.org/10.1007/s00028-016-0347-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-015-2305-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051995764", 
          "https://doi.org/10.1007/s00220-015-2305-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.201300007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052142519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imrn/rns158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059691048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219891606000938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063010490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.2008.57.3338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067513775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/faa2875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072363416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072371425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-017-2847-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084019668", 
          "https://doi.org/10.1007/s00220-017-2847-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-017-2847-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084019668", 
          "https://doi.org/10.1007/s00220-017-2847-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2017.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084522571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00047137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086232277", 
          "https://doi.org/10.1007/bf00047137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12220-017-9905-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091081306", 
          "https://doi.org/10.1007/s12220-017-9905-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12220-017-9905-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091081306", 
          "https://doi.org/10.1007/s12220-017-9905-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110848915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096933657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110484380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096997010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098710047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2018.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105643693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12220-018-0086-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106827855", 
          "https://doi.org/10.1007/s12220-018-0086-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00526-018-1426-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107466955", 
          "https://doi.org/10.1007/s00526-018-1426-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/978-94-6239-003-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108573874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2991/978-94-6239-003-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108573874", 
          "https://doi.org/10.2991/978-94-6239-003-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2991/978-94-6239-003-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108573874", 
          "https://doi.org/10.2991/978-94-6239-003-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.201700408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112060278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.201700408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112060278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.201700408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112060278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.201700408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112060278"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-06", 
    "datePublishedReg": "2019-03-06", 
    "description": "We study the regularity of the solutions of second order boundary value problems on manifolds with boundary and bounded geometry. We first show that the regularity property of a given boundary value problem (P,C) is equivalent to the uniform regularity of the natural family (Px,Cx) of associated boundary value problems in local coordinates. We verify that this property is satisfied for the Dirichlet boundary conditions and strongly elliptic operators via a compactness argument. We then introduce a uniform Shapiro-Lopatinski regularity condition, which is a modification of the classical one, and we prove that it characterizes the boundary value problems that satisfy the usual regularity property. We also show that the natural Robin boundary conditions always satisfy the uniform Shapiro-Lopatinski regularity condition, provided that our operator satisfies the strong Legendre condition. This is achieved by proving that \u201cwell-posedness implies regularity\u201d via a modification of the classical \u201cNirenberg trick\u201d. When combining our regularity results with the Poincar\u00e9 inequality of (Ammann-Gro\u00dfe-Nistor, preprint 2015), one obtains the usual well-posedness results for the classical boundary value problems in the usual scale of Sobolev spaces, thus extending these important, well-known theorems from smooth, bounded domains, to manifolds with boundary and bounded geometry. As we show in several examples, these results do not hold true anymore if one drops the bounded geometry assumption. We also introduce a uniform Agmon condition and show that it is equivalent to the coerciveness. Consequently, we prove a well-posedness result for parabolic equations whose elliptic generator satisfies the uniform Agmon condition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11118-019-09774-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135984", 
        "issn": [
          "0926-2601", 
          "1572-929X"
        ], 
        "name": "Potential Analysis", 
        "type": "Periodical"
      }
    ], 
    "name": "Uniform Shapiro-Lopatinski Conditions and Boundary Value Problems on Manifolds with Bounded Geometry", 
    "pagination": "1-41", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a3915ba30b868f9964e4784c8974a4e01aa96c6eceb61cde67830d171db4684f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11118-019-09774-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112587574"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11118-019-09774-y", 
      "https://app.dimensions.ai/details/publication/pub.1112587574"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45348_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11118-019-09774-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11118-019-09774-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11118-019-09774-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11118-019-09774-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11118-019-09774-y'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      21 PREDICATES      72 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11118-019-09774-y schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9967fc82cbb24eecad2d2c0bc21a9c18
4 schema:citation sg:pub.10.1007/978-1-4612-5561-1
5 sg:pub.10.1007/978-3-0348-0939-9_4
6 sg:pub.10.1007/978-3-540-49938-1
7 sg:pub.10.1007/978-3-642-22842-1_12
8 sg:pub.10.1007/978-3-642-65161-8
9 sg:pub.10.1007/978-3-662-06721-5_1
10 sg:pub.10.1007/bf00047137
11 sg:pub.10.1007/bf02790236
12 sg:pub.10.1007/s000230200001
13 sg:pub.10.1007/s00028-014-0218-6
14 sg:pub.10.1007/s00028-016-0347-1
15 sg:pub.10.1007/s00205-008-0180-y
16 sg:pub.10.1007/s00220-015-2305-0
17 sg:pub.10.1007/s00220-016-2664-1
18 sg:pub.10.1007/s00220-017-2847-4
19 sg:pub.10.1007/s00526-018-1426-7
20 sg:pub.10.1007/s11040-015-9176-7
21 sg:pub.10.1007/s12220-017-9905-1
22 sg:pub.10.1007/s12220-018-0086-3
23 sg:pub.10.2991/978-94-6239-003-4
24 https://app.dimensions.ai/details/publication/pub.1010968636
25 https://doi.org/10.1002/1522-2616(200103)223:1<103::aid-mana103>3.0.co;2-s
26 https://doi.org/10.1002/cpa.3160080414
27 https://doi.org/10.1002/cpa.3160120305
28 https://doi.org/10.1002/cpa.3160120405
29 https://doi.org/10.1002/mana.19871300127
30 https://doi.org/10.1002/mana.201300007
31 https://doi.org/10.1002/mana.201700408
32 https://doi.org/10.1016/b978-044452833-9.50008-5
33 https://doi.org/10.1016/j.aim.2017.03.021
34 https://doi.org/10.1016/j.crma.2012.06.009
35 https://doi.org/10.1016/j.crma.2015.11.005
36 https://doi.org/10.1016/j.crma.2018.07.001
37 https://doi.org/10.1016/j.jde.2009.07.007
38 https://doi.org/10.1017/s1446788700018504
39 https://doi.org/10.1090/gsm/052
40 https://doi.org/10.1090/s0002-9947-00-02444-2
41 https://doi.org/10.1093/imrn/rns158
42 https://doi.org/10.1112/jlms/s2-35.2.327
43 https://doi.org/10.1142/s0219891606000938
44 https://doi.org/10.1155/s0161171204212108
45 https://doi.org/10.1512/iumj.2008.57.3338
46 https://doi.org/10.1515/9783110484380
47 https://doi.org/10.1515/9783110848915
48 https://doi.org/10.1515/crelle-2012-0004
49 https://doi.org/10.2991/978-94-6239-003-4
50 https://doi.org/10.4213/faa2875
51 https://doi.org/10.4213/sm123
52 schema:datePublished 2019-03-06
53 schema:datePublishedReg 2019-03-06
54 schema:description We study the regularity of the solutions of second order boundary value problems on manifolds with boundary and bounded geometry. We first show that the regularity property of a given boundary value problem (P,C) is equivalent to the uniform regularity of the natural family (Px,Cx) of associated boundary value problems in local coordinates. We verify that this property is satisfied for the Dirichlet boundary conditions and strongly elliptic operators via a compactness argument. We then introduce a uniform Shapiro-Lopatinski regularity condition, which is a modification of the classical one, and we prove that it characterizes the boundary value problems that satisfy the usual regularity property. We also show that the natural Robin boundary conditions always satisfy the uniform Shapiro-Lopatinski regularity condition, provided that our operator satisfies the strong Legendre condition. This is achieved by proving that “well-posedness implies regularity” via a modification of the classical “Nirenberg trick”. When combining our regularity results with the Poincaré inequality of (Ammann-Große-Nistor, preprint 2015), one obtains the usual well-posedness results for the classical boundary value problems in the usual scale of Sobolev spaces, thus extending these important, well-known theorems from smooth, bounded domains, to manifolds with boundary and bounded geometry. As we show in several examples, these results do not hold true anymore if one drops the bounded geometry assumption. We also introduce a uniform Agmon condition and show that it is equivalent to the coerciveness. Consequently, we prove a well-posedness result for parabolic equations whose elliptic generator satisfies the uniform Agmon condition.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf sg:journal.1135984
59 schema:name Uniform Shapiro-Lopatinski Conditions and Boundary Value Problems on Manifolds with Bounded Geometry
60 schema:pagination 1-41
61 schema:productId Nb6ae993df4194f70b8a0c27f0a606744
62 Ne6ad52646ab54153b8b40798ab28fe81
63 Nfbf11b1cc23242269685c225551ef5d7
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112587574
65 https://doi.org/10.1007/s11118-019-09774-y
66 schema:sdDatePublished 2019-04-11T11:10
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nd5e4f25789ef4f0a9c042a4ce021a587
69 schema:url https://link.springer.com/10.1007%2Fs11118-019-09774-y
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N2aeb5e4e6c9f42bda43201405c804b22 schema:affiliation Nc0afa5bf3c0c425dae7fb29b86ef9653
74 schema:familyName Große
75 schema:givenName Nadine
76 rdf:type schema:Person
77 N5d8ae4e9b6bd4504a4b748695c3e0aec schema:affiliation https://www.grid.ac/institutes/grid.418333.e
78 schema:familyName Nistor
79 schema:givenName Victor
80 rdf:type schema:Person
81 N9967fc82cbb24eecad2d2c0bc21a9c18 rdf:first N2aeb5e4e6c9f42bda43201405c804b22
82 rdf:rest Na119a78644e1451c88a52e5933310768
83 Na119a78644e1451c88a52e5933310768 rdf:first N5d8ae4e9b6bd4504a4b748695c3e0aec
84 rdf:rest rdf:nil
85 Nb6ae993df4194f70b8a0c27f0a606744 schema:name readcube_id
86 schema:value a3915ba30b868f9964e4784c8974a4e01aa96c6eceb61cde67830d171db4684f
87 rdf:type schema:PropertyValue
88 Nc0afa5bf3c0c425dae7fb29b86ef9653 schema:name Mathematisches Institut, Universität Freiburg, 79104, Freiburg, Germany
89 rdf:type schema:Organization
90 Nd5e4f25789ef4f0a9c042a4ce021a587 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Ne6ad52646ab54153b8b40798ab28fe81 schema:name dimensions_id
93 schema:value pub.1112587574
94 rdf:type schema:PropertyValue
95 Nfbf11b1cc23242269685c225551ef5d7 schema:name doi
96 schema:value 10.1007/s11118-019-09774-y
97 rdf:type schema:PropertyValue
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
102 schema:name Pure Mathematics
103 rdf:type schema:DefinedTerm
104 sg:journal.1135984 schema:issn 0926-2601
105 1572-929X
106 schema:name Potential Analysis
107 rdf:type schema:Periodical
108 sg:pub.10.1007/978-1-4612-5561-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042930842
109 https://doi.org/10.1007/978-1-4612-5561-1
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-3-0348-0939-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042881046
112 https://doi.org/10.1007/978-3-0348-0939-9_4
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-3-540-49938-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025664356
115 https://doi.org/10.1007/978-3-540-49938-1
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-642-22842-1_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003879523
118 https://doi.org/10.1007/978-3-642-22842-1_12
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-642-65161-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010968636
121 https://doi.org/10.1007/978-3-642-65161-8
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-3-662-06721-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043756981
124 https://doi.org/10.1007/978-3-662-06721-5_1
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf00047137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086232277
127 https://doi.org/10.1007/bf00047137
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf02790236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015959182
130 https://doi.org/10.1007/bf02790236
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s000230200001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043759107
133 https://doi.org/10.1007/s000230200001
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00028-014-0218-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031867569
136 https://doi.org/10.1007/s00028-014-0218-6
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00028-016-0347-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050796916
139 https://doi.org/10.1007/s00028-016-0347-1
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00205-008-0180-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1023766844
142 https://doi.org/10.1007/s00205-008-0180-y
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00220-015-2305-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051995764
145 https://doi.org/10.1007/s00220-015-2305-0
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00220-016-2664-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010680730
148 https://doi.org/10.1007/s00220-016-2664-1
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00220-017-2847-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084019668
151 https://doi.org/10.1007/s00220-017-2847-4
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00526-018-1426-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107466955
154 https://doi.org/10.1007/s00526-018-1426-7
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s11040-015-9176-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036025391
157 https://doi.org/10.1007/s11040-015-9176-7
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s12220-017-9905-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091081306
160 https://doi.org/10.1007/s12220-017-9905-1
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s12220-018-0086-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106827855
163 https://doi.org/10.1007/s12220-018-0086-3
164 rdf:type schema:CreativeWork
165 sg:pub.10.2991/978-94-6239-003-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108573874
166 https://doi.org/10.2991/978-94-6239-003-4
167 rdf:type schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1010968636 schema:CreativeWork
169 https://doi.org/10.1002/1522-2616(200103)223:1<103::aid-mana103>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1004394128
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/cpa.3160080414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014383459
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/cpa.3160120305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036719378
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/cpa.3160120405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024459563
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/mana.19871300127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018795233
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/mana.201300007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052142519
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/mana.201700408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112060278
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/b978-044452833-9.50008-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014516213
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.aim.2017.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084522571
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.crma.2012.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040293850
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.crma.2015.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002306985
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.crma.2018.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105643693
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jde.2009.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037860517
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1017/s1446788700018504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030581579
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1090/gsm/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098710047
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1090/s0002-9947-00-02444-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048123900
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/imrn/rns158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059691048
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1112/jlms/s2-35.2.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022460210
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1142/s0219891606000938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063010490
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1155/s0161171204212108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040389700
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1512/iumj.2008.57.3338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067513775
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1515/9783110484380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096997010
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1515/9783110848915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096933657
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1515/crelle-2012-0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000331462
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2991/978-94-6239-003-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108573874
218 rdf:type schema:CreativeWork
219 https://doi.org/10.4213/faa2875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072363416
220 rdf:type schema:CreativeWork
221 https://doi.org/10.4213/sm123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072371425
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.418333.e schema:alternateName Romanian Academy
224 schema:name Institute of Mathematics of the Romanian Academy, PO BOX 1-764, 014700, Bucharest, Romania
225 Université de Lorraine, UFR MIM, Ile du Saulcy, CS 50128, 57045, Metz, France
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...