Large Deviations for Quasilinear Parabolic Stochastic Partial Differential Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-02

AUTHORS

Zhao Dong, Rangrang Zhang, Tusheng Zhang

ABSTRACT

In this paper, we establish the Freidlin-Wentzell’s large deviations for quasilinear parabolic stochastic partial differential equations with multiplicative noise, which are neither monotone nor locally monotone. The proof is based on the weak convergence approach.

PAGES

1-20

References to SciGraph publications

  • 1995-09. Martingale and stationary solutions for stochastic Navier-Stokes equations in PROBABILITY THEORY AND RELATED FIELDS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11118-019-09763-1

    DOI

    http://dx.doi.org/10.1007/s11118-019-09763-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111893203


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China", 
                "School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dong", 
            "givenName": "Zhao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.43555.32", 
              "name": [
                "School of Mathematics and Statistics, Beijing Institute of Technology, 100081, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Rangrang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "School of Mathematics, University of Manchester, Oxford Road, M13 9PL, Manchester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Tusheng", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01192467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004055734", 
              "https://doi.org/10.1007/bf01192467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01192467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004055734", 
              "https://doi.org/10.1007/bf01192467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jfa.2010.05.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050727873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/07-aop362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064389688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/15-aop1013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064395157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1022855876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064403092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spa.2017.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084109263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611970050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098552243"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-02", 
        "datePublishedReg": "2019-02-02", 
        "description": "In this paper, we establish the Freidlin-Wentzell\u2019s large deviations for quasilinear parabolic stochastic partial differential equations with multiplicative noise, which are neither monotone nor locally monotone. The proof is based on the weak convergence approach.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11118-019-09763-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135984", 
            "issn": [
              "0926-2601", 
              "1572-929X"
            ], 
            "name": "Potential Analysis", 
            "type": "Periodical"
          }
        ], 
        "name": "Large Deviations for Quasilinear Parabolic Stochastic Partial Differential Equations", 
        "pagination": "1-20", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4d0801976925a3f7ae858d0b518adf69f4784a186f90ace7862f88d3a078517e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11118-019-09763-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111893203"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11118-019-09763-1", 
          "https://app.dimensions.ai/details/publication/pub.1111893203"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000328_0000000328/records_126428_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11118-019-09763-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11118-019-09763-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11118-019-09763-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11118-019-09763-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11118-019-09763-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    87 TRIPLES      20 PREDICATES      29 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11118-019-09763-1 schema:author N97c739af4ea3487481b541e07a6bced7
    2 schema:citation sg:pub.10.1007/bf01192467
    3 https://doi.org/10.1016/j.jfa.2010.05.012
    4 https://doi.org/10.1016/j.spa.2017.01.010
    5 https://doi.org/10.1137/1.9781611970050
    6 https://doi.org/10.1214/07-aop362
    7 https://doi.org/10.1214/15-aop1013
    8 https://doi.org/10.1214/aop/1022855876
    9 schema:datePublished 2019-02-02
    10 schema:datePublishedReg 2019-02-02
    11 schema:description In this paper, we establish the Freidlin-Wentzell’s large deviations for quasilinear parabolic stochastic partial differential equations with multiplicative noise, which are neither monotone nor locally monotone. The proof is based on the weak convergence approach.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf sg:journal.1135984
    16 schema:name Large Deviations for Quasilinear Parabolic Stochastic Partial Differential Equations
    17 schema:pagination 1-20
    18 schema:productId N28ac7c88c1b7435f8e5ec06b572cec55
    19 N5cf89aa8da3142e8b62807c15120a14d
    20 Nfbc41f0e0d46482c8fc2f59ddc4bdb44
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111893203
    22 https://doi.org/10.1007/s11118-019-09763-1
    23 schema:sdDatePublished 2019-04-11T09:00
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N49102f06e3a2491592ea3820f4dd36c6
    26 schema:url https://link.springer.com/10.1007%2Fs11118-019-09763-1
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N03416433966b4098a41a6315788ab8c5 schema:affiliation https://www.grid.ac/institutes/grid.43555.32
    31 schema:familyName Zhang
    32 schema:givenName Rangrang
    33 rdf:type schema:Person
    34 N1e3dbfa8b6be4dbabfcfb7ce7a567cfe schema:affiliation https://www.grid.ac/institutes/grid.410726.6
    35 schema:familyName Dong
    36 schema:givenName Zhao
    37 rdf:type schema:Person
    38 N28ac7c88c1b7435f8e5ec06b572cec55 schema:name dimensions_id
    39 schema:value pub.1111893203
    40 rdf:type schema:PropertyValue
    41 N49102f06e3a2491592ea3820f4dd36c6 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N5064f8bfaccc4e4f80af6b59b6ed960c schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    44 schema:familyName Zhang
    45 schema:givenName Tusheng
    46 rdf:type schema:Person
    47 N5cf89aa8da3142e8b62807c15120a14d schema:name readcube_id
    48 schema:value 4d0801976925a3f7ae858d0b518adf69f4784a186f90ace7862f88d3a078517e
    49 rdf:type schema:PropertyValue
    50 N919f0e5766a44c6aa1a6ac4c2d5014b9 rdf:first N5064f8bfaccc4e4f80af6b59b6ed960c
    51 rdf:rest rdf:nil
    52 N97c739af4ea3487481b541e07a6bced7 rdf:first N1e3dbfa8b6be4dbabfcfb7ce7a567cfe
    53 rdf:rest N97dcab985cc7437cb3d74927c7dbb306
    54 N97dcab985cc7437cb3d74927c7dbb306 rdf:first N03416433966b4098a41a6315788ab8c5
    55 rdf:rest N919f0e5766a44c6aa1a6ac4c2d5014b9
    56 Nfbc41f0e0d46482c8fc2f59ddc4bdb44 schema:name doi
    57 schema:value 10.1007/s11118-019-09763-1
    58 rdf:type schema:PropertyValue
    59 sg:journal.1135984 schema:issn 0926-2601
    60 1572-929X
    61 schema:name Potential Analysis
    62 rdf:type schema:Periodical
    63 sg:pub.10.1007/bf01192467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004055734
    64 https://doi.org/10.1007/bf01192467
    65 rdf:type schema:CreativeWork
    66 https://doi.org/10.1016/j.jfa.2010.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050727873
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.1016/j.spa.2017.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084109263
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1137/1.9781611970050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098552243
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1214/07-aop362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389688
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1214/15-aop1013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064395157
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1214/aop/1022855876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064403092
    77 rdf:type schema:CreativeWork
    78 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
    79 schema:name RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
    80 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
    81 rdf:type schema:Organization
    82 https://www.grid.ac/institutes/grid.43555.32 schema:alternateName Beijing Institute of Technology
    83 schema:name School of Mathematics and Statistics, Beijing Institute of Technology, 100081, Beijing, China
    84 rdf:type schema:Organization
    85 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
    86 schema:name School of Mathematics, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
    87 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...