Spherical Twists as the σ2-Harmonic Maps from n-Dimensional Annuli into Sn−1 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

M. S. Shahrokhi-Dehkordi

ABSTRACT

Let X⊂ℝn be a bounded Lipschitz domain and consider the σ2-energy functional Fσ2[u;X]:=∫X∧2∇u2dx, over the space of admissible Sobolev maps A(X):=u∈W1,4(X,Sn−1):u|∂X=x|x|−1. In this article we address the question of multiplicity versus uniqueness for extremals and strong local minimisers of the σ2-energy funcional Fσ2[⋅,X] in A(X) where the domain X is n-dimensional annuli. We consider a topological class of maps referred to as spherical twists and examine them in connection with the Euler-Lagrange equations associated with σ2-energy functional over A(X), the so-called σ2-harmonic map equation on X. The main result is a surprising discrepancy between even and odd dimensions. In even dimensions the latter system of equations admits infinitely many smooth solutions amongst such maps whereas in odd dimensions this number reduces to one. The result relies on a careful analysis of the full versus the restricted Euler-Lagrange equations. More... »

PAGES

327-345

Journal

TITLE

Potential Analysis

ISSUE

3

VOLUME

50

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11118-018-9684-8

DOI

http://dx.doi.org/10.1007/s11118-018-9684-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100751756


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, University of Shahid Beheshti, Evin, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahrokhi-Dehkordi", 
        "givenName": "M. S.", 
        "id": "sg:person.010376531277.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376531277.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/0-387-21791-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008495768", 
          "https://doi.org/10.1007/0-387-21791-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2013.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013750385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0017089502001064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016479107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2009.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019273333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.na.2014.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029171801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-005-0356-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030127409", 
          "https://doi.org/10.1007/s00205-005-0356-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-005-0356-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030127409", 
          "https://doi.org/10.1007/s00205-005-0356-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00526-016-0990-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032456304", 
          "https://doi.org/10.1007/s00526-016-0990-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-005-1289-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037389054", 
          "https://doi.org/10.1007/s00220-005-1289-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-005-1289-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037389054", 
          "https://doi.org/10.1007/s00220-005-1289-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-014-2182-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037887229", 
          "https://doi.org/10.1007/s00220-014-2182-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1961.0018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037916716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2007.10.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041059669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00526-008-0202-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043324250", 
          "https://doi.org/10.1007/s00526-008-0202-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00526-008-0202-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043324250", 
          "https://doi.org/10.1007/s00526-008-0202-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00281557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048959497", 
          "https://doi.org/10.1007/bf00281557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0065-9266-2011-00640-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059337562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511626319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098672684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198503620.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098726486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471705195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471705195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700877"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Let X\u2282\u211dn be a bounded Lipschitz domain and consider the \u03c32-energy functional F\u03c32[u;X]:=\u222bX\u22272\u2207u2dx, over the space of admissible Sobolev maps A(X):=u\u2208W1,4(X,Sn\u22121):u|\u2202X=x|x|\u22121. In this article we address the question of multiplicity versus uniqueness for extremals and strong local minimisers of the \u03c32-energy funcional F\u03c32[\u22c5,X] in A(X) where the domain X is n-dimensional annuli. We consider a topological class of maps referred to as spherical twists and examine them in connection with the Euler-Lagrange equations associated with \u03c32-energy functional over A(X), the so-called \u03c32-harmonic map equation on X. The main result is a surprising discrepancy between even and odd dimensions. In even dimensions the latter system of equations admits infinitely many smooth solutions amongst such maps whereas in odd dimensions this number reduces to one. The result relies on a careful analysis of the full versus the restricted Euler-Lagrange equations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11118-018-9684-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135984", 
        "issn": [
          "0926-2601", 
          "1572-929X"
        ], 
        "name": "Potential Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "Spherical Twists as the \u03c32-Harmonic Maps from n-Dimensional Annuli into Sn\u22121", 
    "pagination": "327-345", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "debf896d8b0baab035dd4e01e15d1b66c0496cf9d1fca9db4f93638a637a1c20"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11118-018-9684-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100751756"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11118-018-9684-8", 
      "https://app.dimensions.ai/details/publication/pub.1100751756"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11118-018-9684-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11118-018-9684-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11118-018-9684-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11118-018-9684-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11118-018-9684-8'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11118-018-9684-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9ffdc93b7a3348c880a0d9e1cc3ca7b1
4 schema:citation sg:pub.10.1007/0-387-21791-6_1
5 sg:pub.10.1007/bf00281557
6 sg:pub.10.1007/s00205-005-0356-7
7 sg:pub.10.1007/s00220-005-1289-6
8 sg:pub.10.1007/s00220-014-2182-y
9 sg:pub.10.1007/s00526-008-0202-5
10 sg:pub.10.1007/s00526-016-0990-y
11 https://doi.org/10.1002/0471705195
12 https://doi.org/10.1016/0029-5582(62)90775-7
13 https://doi.org/10.1016/j.geomphys.2009.12.012
14 https://doi.org/10.1016/j.jde.2013.02.003
15 https://doi.org/10.1016/j.na.2014.12.014
16 https://doi.org/10.1016/j.physletb.2007.10.040
17 https://doi.org/10.1017/cbo9780511626319
18 https://doi.org/10.1017/s0017089502001064
19 https://doi.org/10.1090/cbms/050
20 https://doi.org/10.1090/s0065-9266-2011-00640-4
21 https://doi.org/10.1093/acprof:oso/9780198503620.001.0001
22 https://doi.org/10.1098/rspa.1961.0018
23 https://doi.org/10.2307/2373037
24 schema:datePublished 2019-04
25 schema:datePublishedReg 2019-04-01
26 schema:description Let X⊂ℝn be a bounded Lipschitz domain and consider the σ2-energy functional Fσ2[u;X]:=∫X∧2∇u2dx, over the space of admissible Sobolev maps A(X):=u∈W1,4(X,Sn−1):u|∂X=x|x|−1. In this article we address the question of multiplicity versus uniqueness for extremals and strong local minimisers of the σ2-energy funcional Fσ2[⋅,X] in A(X) where the domain X is n-dimensional annuli. We consider a topological class of maps referred to as spherical twists and examine them in connection with the Euler-Lagrange equations associated with σ2-energy functional over A(X), the so-called σ2-harmonic map equation on X. The main result is a surprising discrepancy between even and odd dimensions. In even dimensions the latter system of equations admits infinitely many smooth solutions amongst such maps whereas in odd dimensions this number reduces to one. The result relies on a careful analysis of the full versus the restricted Euler-Lagrange equations.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N8d44e949f6b34c93aab6aeff0614b64b
31 Ne769c71849bc4348a15998b53d9aa7be
32 sg:journal.1135984
33 schema:name Spherical Twists as the σ2-Harmonic Maps from n-Dimensional Annuli into Sn−1
34 schema:pagination 327-345
35 schema:productId N4bd9281f0a3c48f29e84fcb7bbe904ec
36 N580dc5951e734b97b67f5289ef6ed0c5
37 N9d001c71f9b3487c8110022b8bc52fbf
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100751756
39 https://doi.org/10.1007/s11118-018-9684-8
40 schema:sdDatePublished 2019-04-11T12:38
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N1c92087bb49f4447966bd280764d942f
43 schema:url https://link.springer.com/10.1007%2Fs11118-018-9684-8
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N1c92087bb49f4447966bd280764d942f schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N4bd9281f0a3c48f29e84fcb7bbe904ec schema:name readcube_id
50 schema:value debf896d8b0baab035dd4e01e15d1b66c0496cf9d1fca9db4f93638a637a1c20
51 rdf:type schema:PropertyValue
52 N580dc5951e734b97b67f5289ef6ed0c5 schema:name dimensions_id
53 schema:value pub.1100751756
54 rdf:type schema:PropertyValue
55 N836d057924ca4d5198400ca19cd15299 schema:name Department of Mathematics, University of Shahid Beheshti, Evin, Tehran, Iran
56 rdf:type schema:Organization
57 N8d44e949f6b34c93aab6aeff0614b64b schema:volumeNumber 50
58 rdf:type schema:PublicationVolume
59 N9d001c71f9b3487c8110022b8bc52fbf schema:name doi
60 schema:value 10.1007/s11118-018-9684-8
61 rdf:type schema:PropertyValue
62 N9ffdc93b7a3348c880a0d9e1cc3ca7b1 rdf:first sg:person.010376531277.19
63 rdf:rest rdf:nil
64 Ne769c71849bc4348a15998b53d9aa7be schema:issueNumber 3
65 rdf:type schema:PublicationIssue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1135984 schema:issn 0926-2601
73 1572-929X
74 schema:name Potential Analysis
75 rdf:type schema:Periodical
76 sg:person.010376531277.19 schema:affiliation N836d057924ca4d5198400ca19cd15299
77 schema:familyName Shahrokhi-Dehkordi
78 schema:givenName M. S.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376531277.19
80 rdf:type schema:Person
81 sg:pub.10.1007/0-387-21791-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008495768
82 https://doi.org/10.1007/0-387-21791-6_1
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf00281557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048959497
85 https://doi.org/10.1007/bf00281557
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s00205-005-0356-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030127409
88 https://doi.org/10.1007/s00205-005-0356-7
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s00220-005-1289-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037389054
91 https://doi.org/10.1007/s00220-005-1289-6
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s00220-014-2182-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037887229
94 https://doi.org/10.1007/s00220-014-2182-y
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s00526-008-0202-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043324250
97 https://doi.org/10.1007/s00526-008-0202-5
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00526-016-0990-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032456304
100 https://doi.org/10.1007/s00526-016-0990-y
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1002/0471705195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109700877
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0029-5582(62)90775-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019864545
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.geomphys.2009.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019273333
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jde.2013.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013750385
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.na.2014.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029171801
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.physletb.2007.10.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041059669
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1017/cbo9780511626319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098672684
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1017/s0017089502001064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016479107
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1090/cbms/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698942
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1090/s0065-9266-2011-00640-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059337562
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1093/acprof:oso/9780198503620.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098726486
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1098/rspa.1961.0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037916716
125 rdf:type schema:CreativeWork
126 https://doi.org/10.2307/2373037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899623
127 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...