Quasiopen and p-Path Open Sets, and Characterizations of Quasicontinuity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01

AUTHORS

Anders Björn, Jana Björn, Jan Malý

ABSTRACT

In this paper we give various characterizations of quasiopen sets and quasicontinuous functions on metric spaces. For complete metric spaces equipped with a doubling measure supporting a p-Poincaré inequality we show that quasiopen and p-path open sets coincide. Under the same assumptions we show that all Newton-Sobolev functions on quasiopen sets are quasicontinuous. More... »

PAGES

181-199

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11118-016-9580-z

DOI

http://dx.doi.org/10.1007/s11118-016-9580-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022381631


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Link\u00f6ping University", 
          "id": "https://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Department of Mathematics, Link\u00f6ping University, SE-581 83, Link\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bj\u00f6rn", 
        "givenName": "Anders", 
        "id": "sg:person.015337602623.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015337602623.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Link\u00f6ping University", 
          "id": "https://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Department of Mathematics, Link\u00f6ping University, SE-581 83, Link\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bj\u00f6rn", 
        "givenName": "Jana", 
        "id": "sg:person.012636473411.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012636473411.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jan Evangelista Purkyn\u011b University in \u00dast\u00ed nad Labem", 
          "id": "https://www.grid.ac/institutes/grid.424917.d", 
          "name": [
            "Department of Mathematics, Faculty of Science, J. E. Purkyn\u011b University, \u010cesk\u00e9 ml\u00e1de\u017ee 8, CZ-400 96, \u00dast\u00ed nad Labem, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mal\u00fd", 
        "givenName": "Jan", 
        "id": "sg:person.016026347345.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4613-0131-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017376824", 
          "https://doi.org/10.1007/978-1-4613-0131-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0131-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017376824", 
          "https://doi.org/10.1007/978-1-4613-0131-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s000390050094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025720597", 
          "https://doi.org/10.1007/s000390050094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038599583", 
          "https://doi.org/10.1007/bf02392747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4190-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040723300", 
          "https://doi.org/10.1007/978-1-4612-4190-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4190-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040723300", 
          "https://doi.org/10.1007/978-1-4612-4190-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605309208820847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050013647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00209-016-1797-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054513114", 
          "https://doi.org/10.1007/s00209-016-1797-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00209-016-1797-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054513114", 
          "https://doi.org/10.1007/s00209-016-1797-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.2015.64.5527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067514332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/rmi/275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072320563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/rmi/514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072320829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/rmi/746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072321078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/rmi/830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072321172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5186/aasfm.2016.4130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072648966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073138988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073139691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/338/06074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089200847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781316135914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098719308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/surv/051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098741749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/e044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099011011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/e044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099011011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/e044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099011011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099348614"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "In this paper we give various characterizations of quasiopen sets and quasicontinuous functions on metric spaces. For complete metric spaces equipped with a doubling measure supporting a p-Poincar\u00e9 inequality we show that quasiopen and p-path open sets coincide. Under the same assumptions we show that all Newton-Sobolev functions on quasiopen sets are quasicontinuous.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11118-016-9580-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135984", 
        "issn": [
          "0926-2601", 
          "1572-929X"
        ], 
        "name": "Potential Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Quasiopen and p-Path Open Sets, and Characterizations of Quasicontinuity", 
    "pagination": "181-199", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6aa15bd5e0da7ddc57de1d12b4a3a35bf8cd5f5b700eea3eae2f7d0a482da4b9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11118-016-9580-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022381631"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11118-016-9580-z", 
      "https://app.dimensions.ai/details/publication/pub.1022381631"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87088_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11118-016-9580-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11118-016-9580-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11118-016-9580-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11118-016-9580-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11118-016-9580-z'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11118-016-9580-z schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nfd232e9556f1446e9842b276c7dd71b0
4 schema:citation sg:pub.10.1007/978-1-4612-4190-4
5 sg:pub.10.1007/978-1-4613-0131-8
6 sg:pub.10.1007/bf02392747
7 sg:pub.10.1007/s000390050094
8 sg:pub.10.1007/s00209-016-1797-4
9 https://doi.org/10.1017/cbo9781316135914
10 https://doi.org/10.1080/03605309208820847
11 https://doi.org/10.1090/conm/338/06074
12 https://doi.org/10.1090/surv/051
13 https://doi.org/10.1142/e044
14 https://doi.org/10.1512/iumj.2015.64.5527
15 https://doi.org/10.4171/099
16 https://doi.org/10.4171/rmi/275
17 https://doi.org/10.4171/rmi/514
18 https://doi.org/10.4171/rmi/746
19 https://doi.org/10.4171/rmi/830
20 https://doi.org/10.5186/aasfm.2016.4130
21 https://doi.org/10.5802/aif.364
22 https://doi.org/10.5802/aif.998
23 schema:datePublished 2017-01
24 schema:datePublishedReg 2017-01-01
25 schema:description In this paper we give various characterizations of quasiopen sets and quasicontinuous functions on metric spaces. For complete metric spaces equipped with a doubling measure supporting a p-Poincaré inequality we show that quasiopen and p-path open sets coincide. Under the same assumptions we show that all Newton-Sobolev functions on quasiopen sets are quasicontinuous.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N3f69964ee1844f568e29c53bea0d4281
30 N566328d0e0204177a61ab1a0a4916407
31 sg:journal.1135984
32 schema:name Quasiopen and p-Path Open Sets, and Characterizations of Quasicontinuity
33 schema:pagination 181-199
34 schema:productId N121d8b2b40694362b1492632a47988fe
35 N58364280c7df4ca88425ce577c2ccb5d
36 N9af69aa142de4075a016f6ca09c9f828
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022381631
38 https://doi.org/10.1007/s11118-016-9580-z
39 schema:sdDatePublished 2019-04-11T12:22
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nf8a1bdd560e84fc2a17aefc58268c0b9
42 schema:url https://link.springer.com/10.1007%2Fs11118-016-9580-z
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N121d8b2b40694362b1492632a47988fe schema:name readcube_id
47 schema:value 6aa15bd5e0da7ddc57de1d12b4a3a35bf8cd5f5b700eea3eae2f7d0a482da4b9
48 rdf:type schema:PropertyValue
49 N3678fc3364aa4c86b075c75214842900 rdf:first sg:person.016026347345.35
50 rdf:rest rdf:nil
51 N3f69964ee1844f568e29c53bea0d4281 schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N566328d0e0204177a61ab1a0a4916407 schema:volumeNumber 46
54 rdf:type schema:PublicationVolume
55 N58364280c7df4ca88425ce577c2ccb5d schema:name doi
56 schema:value 10.1007/s11118-016-9580-z
57 rdf:type schema:PropertyValue
58 N9af69aa142de4075a016f6ca09c9f828 schema:name dimensions_id
59 schema:value pub.1022381631
60 rdf:type schema:PropertyValue
61 Na33c296f01284a6b834fa857bdc5283e rdf:first sg:person.012636473411.22
62 rdf:rest N3678fc3364aa4c86b075c75214842900
63 Nf8a1bdd560e84fc2a17aefc58268c0b9 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nfd232e9556f1446e9842b276c7dd71b0 rdf:first sg:person.015337602623.25
66 rdf:rest Na33c296f01284a6b834fa857bdc5283e
67 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
68 schema:name Biological Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
71 schema:name Biochemistry and Cell Biology
72 rdf:type schema:DefinedTerm
73 sg:journal.1135984 schema:issn 0926-2601
74 1572-929X
75 schema:name Potential Analysis
76 rdf:type schema:Periodical
77 sg:person.012636473411.22 schema:affiliation https://www.grid.ac/institutes/grid.5640.7
78 schema:familyName Björn
79 schema:givenName Jana
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012636473411.22
81 rdf:type schema:Person
82 sg:person.015337602623.25 schema:affiliation https://www.grid.ac/institutes/grid.5640.7
83 schema:familyName Björn
84 schema:givenName Anders
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015337602623.25
86 rdf:type schema:Person
87 sg:person.016026347345.35 schema:affiliation https://www.grid.ac/institutes/grid.424917.d
88 schema:familyName Malý
89 schema:givenName Jan
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35
91 rdf:type schema:Person
92 sg:pub.10.1007/978-1-4612-4190-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040723300
93 https://doi.org/10.1007/978-1-4612-4190-4
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-1-4613-0131-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017376824
96 https://doi.org/10.1007/978-1-4613-0131-8
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02392747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038599583
99 https://doi.org/10.1007/bf02392747
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s000390050094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025720597
102 https://doi.org/10.1007/s000390050094
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00209-016-1797-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054513114
105 https://doi.org/10.1007/s00209-016-1797-4
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1017/cbo9781316135914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098719308
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1080/03605309208820847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050013647
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1090/conm/338/06074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089200847
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1090/surv/051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741749
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1142/e044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099011011
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1512/iumj.2015.64.5527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067514332
118 rdf:type schema:CreativeWork
119 https://doi.org/10.4171/099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099348614
120 rdf:type schema:CreativeWork
121 https://doi.org/10.4171/rmi/275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320563
122 rdf:type schema:CreativeWork
123 https://doi.org/10.4171/rmi/514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320829
124 rdf:type schema:CreativeWork
125 https://doi.org/10.4171/rmi/746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072321078
126 rdf:type schema:CreativeWork
127 https://doi.org/10.4171/rmi/830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072321172
128 rdf:type schema:CreativeWork
129 https://doi.org/10.5186/aasfm.2016.4130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072648966
130 rdf:type schema:CreativeWork
131 https://doi.org/10.5802/aif.364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073138988
132 rdf:type schema:CreativeWork
133 https://doi.org/10.5802/aif.998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139691
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.424917.d schema:alternateName Jan Evangelista Purkyně University in Ústí nad Labem
136 schema:name Department of Mathematics, Faculty of Science, J. E. Purkyně University, České mládeže 8, CZ-400 96, Ústí nad Labem, Czech Republic
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.5640.7 schema:alternateName Linköping University
139 schema:name Department of Mathematics, Linköping University, SE-581 83, Linköping, Sweden
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...