Heat Trace Asymptotics of Subordinate Brownian Motion in Euclidean Space View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02

AUTHORS

M. A. Fahrenwaldt

ABSTRACT

We derive the heat trace asymptotics of the generator of subordinate Brownian motion on Euclidean space for a class of Laplace exponents. The terms in the asymptotic expansion can be computed to arbitrary order and depend both on the geometry of Euclidean space and the short-time behaviour of the process. If the Blumenthal-Getoor index of the process is rational, then the asymptotics may contain logarithmic terms. The key assumption is the existence of a suitable density for the Lévy measure of the subordinator. The analysis is highly explicit. More... »

PAGES

331-354

References to SciGraph publications

Journal

TITLE

Potential Analysis

ISSUE

2

VOLUME

44

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11118-015-9514-1

DOI

http://dx.doi.org/10.1007/s11118-015-9514-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042027922


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Mathematische Stochastik, Leibniz Universit\u00e4t Hannover, Welfengarten 1, 30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahrenwaldt", 
        "givenName": "M. A.", 
        "id": "sg:person.013422372413.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422372413.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-007-4753-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000303892", 
          "https://doi.org/10.1007/978-94-007-4753-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-007-4753-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000303892", 
          "https://doi.org/10.1007/978-94-007-4753-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11565-006-0026-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002435919", 
          "https://doi.org/10.1007/s11565-006-0026-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2011.05.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008072691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2013.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017482299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004400050201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018345384", 
          "https://doi.org/10.1007/s004400050201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004400050201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018345384", 
          "https://doi.org/10.1007/s004400050201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-007-0106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019263221", 
          "https://doi.org/10.1007/s00440-007-0106-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-007-0106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019263221", 
          "https://doi.org/10.1007/s00440-007-0106-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-007-0106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019263221", 
          "https://doi.org/10.1007/s00440-007-0106-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.201300040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021623167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-8512-5_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024578715", 
          "https://doi.org/10.1007/978-3-7643-8512-5_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56579-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031297087", 
          "https://doi.org/10.1007/978-3-642-56579-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56579-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031297087", 
          "https://doi.org/10.1007/978-3-642-56579-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11118-014-9423-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040700052", 
          "https://doi.org/10.1007/s11118-014-9423-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02921566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043165353", 
          "https://doi.org/10.1007/bf02921566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0197-7_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048866937", 
          "https://doi.org/10.1007/978-1-4612-0197-7_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0197-7_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048866937", 
          "https://doi.org/10.1007/978-1-4612-0197-7_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s007800050032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048954212", 
          "https://doi.org/10.1007/s007800050032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-aop604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176994266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064404867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110269338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096911482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198568360.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098725665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511569425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098740719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098906166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098908330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9781860947155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098968490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108595140"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02", 
    "datePublishedReg": "2016-02-01", 
    "description": "We derive the heat trace asymptotics of the generator of subordinate Brownian motion on Euclidean space for a class of Laplace exponents. The terms in the asymptotic expansion can be computed to arbitrary order and depend both on the geometry of Euclidean space and the short-time behaviour of the process. If the Blumenthal-Getoor index of the process is rational, then the asymptotics may contain logarithmic terms. The key assumption is the existence of a suitable density for the L\u00e9vy measure of the subordinator. The analysis is highly explicit.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11118-015-9514-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135984", 
        "issn": [
          "0926-2601", 
          "1572-929X"
        ], 
        "name": "Potential Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Heat Trace Asymptotics of Subordinate Brownian Motion in Euclidean Space", 
    "pagination": "331-354", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c83340ddbd979f1ffe690fbad20ac4876d32288aeff6ba3b0a0cec85a75cb070"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11118-015-9514-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042027922"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11118-015-9514-1", 
      "https://app.dimensions.ai/details/publication/pub.1042027922"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000592.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11118-015-9514-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11118-015-9514-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11118-015-9514-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11118-015-9514-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11118-015-9514-1'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11118-015-9514-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9248dd4d133e49cb935167fb95906850
4 schema:citation sg:pub.10.1007/978-1-4612-0197-7_9
5 sg:pub.10.1007/978-3-642-56579-3
6 sg:pub.10.1007/978-3-7643-8512-5_3
7 sg:pub.10.1007/978-94-007-4753-1
8 sg:pub.10.1007/bf02921566
9 sg:pub.10.1007/s00440-007-0106-x
10 sg:pub.10.1007/s004400050201
11 sg:pub.10.1007/s007800050032
12 sg:pub.10.1007/s11118-014-9423-8
13 sg:pub.10.1007/s11565-006-0026-1
14 https://doi.org/10.1002/mana.201300040
15 https://doi.org/10.1016/j.jmaa.2011.05.067
16 https://doi.org/10.1016/j.jmaa.2013.09.015
17 https://doi.org/10.1017/cbo9780511569425
18 https://doi.org/10.1093/acprof:oso/9780198568360.001.0001
19 https://doi.org/10.1142/9781860947155
20 https://doi.org/10.1142/p245
21 https://doi.org/10.1142/p264
22 https://doi.org/10.1142/p395
23 https://doi.org/10.1214/10-aop604
24 https://doi.org/10.1214/aop/1176994266
25 https://doi.org/10.1515/9783110269338
26 schema:datePublished 2016-02
27 schema:datePublishedReg 2016-02-01
28 schema:description We derive the heat trace asymptotics of the generator of subordinate Brownian motion on Euclidean space for a class of Laplace exponents. The terms in the asymptotic expansion can be computed to arbitrary order and depend both on the geometry of Euclidean space and the short-time behaviour of the process. If the Blumenthal-Getoor index of the process is rational, then the asymptotics may contain logarithmic terms. The key assumption is the existence of a suitable density for the Lévy measure of the subordinator. The analysis is highly explicit.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N461017696a7548059d282850d30b75c9
33 N98cce800c4d745f58349366050993a56
34 sg:journal.1135984
35 schema:name Heat Trace Asymptotics of Subordinate Brownian Motion in Euclidean Space
36 schema:pagination 331-354
37 schema:productId N725ba5b01d16450083e958826e3236ef
38 Naf2d9ef2dd71433393e5d7fac5671e77
39 Nfe4eb07579764616b6a9fbaf1cacebde
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042027922
41 https://doi.org/10.1007/s11118-015-9514-1
42 schema:sdDatePublished 2019-04-11T01:20
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N86976f4fbc1148a89f0e95c66c84e67f
45 schema:url http://link.springer.com/10.1007%2Fs11118-015-9514-1
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N461017696a7548059d282850d30b75c9 schema:volumeNumber 44
50 rdf:type schema:PublicationVolume
51 N725ba5b01d16450083e958826e3236ef schema:name readcube_id
52 schema:value c83340ddbd979f1ffe690fbad20ac4876d32288aeff6ba3b0a0cec85a75cb070
53 rdf:type schema:PropertyValue
54 N86976f4fbc1148a89f0e95c66c84e67f schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N9248dd4d133e49cb935167fb95906850 rdf:first sg:person.013422372413.61
57 rdf:rest rdf:nil
58 N98cce800c4d745f58349366050993a56 schema:issueNumber 2
59 rdf:type schema:PublicationIssue
60 Naf2d9ef2dd71433393e5d7fac5671e77 schema:name dimensions_id
61 schema:value pub.1042027922
62 rdf:type schema:PropertyValue
63 Nfe4eb07579764616b6a9fbaf1cacebde schema:name doi
64 schema:value 10.1007/s11118-015-9514-1
65 rdf:type schema:PropertyValue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1135984 schema:issn 0926-2601
73 1572-929X
74 schema:name Potential Analysis
75 rdf:type schema:Periodical
76 sg:person.013422372413.61 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
77 schema:familyName Fahrenwaldt
78 schema:givenName M. A.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422372413.61
80 rdf:type schema:Person
81 sg:pub.10.1007/978-1-4612-0197-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048866937
82 https://doi.org/10.1007/978-1-4612-0197-7_9
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/978-3-642-56579-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031297087
85 https://doi.org/10.1007/978-3-642-56579-3
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-3-7643-8512-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024578715
88 https://doi.org/10.1007/978-3-7643-8512-5_3
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-94-007-4753-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000303892
91 https://doi.org/10.1007/978-94-007-4753-1
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02921566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043165353
94 https://doi.org/10.1007/bf02921566
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s00440-007-0106-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019263221
97 https://doi.org/10.1007/s00440-007-0106-x
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s004400050201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018345384
100 https://doi.org/10.1007/s004400050201
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s007800050032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048954212
103 https://doi.org/10.1007/s007800050032
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s11118-014-9423-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040700052
106 https://doi.org/10.1007/s11118-014-9423-8
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11565-006-0026-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002435919
109 https://doi.org/10.1007/s11565-006-0026-1
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/mana.201300040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021623167
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.jmaa.2011.05.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008072691
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.jmaa.2013.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017482299
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1017/cbo9780511569425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740719
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1093/acprof:oso/9780198568360.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098725665
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1142/9781860947155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098968490
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1142/p245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098908330
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1142/p264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098906166
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1142/p395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108595140
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1214/10-aop604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391458
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1214/aop/1176994266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404867
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1515/9783110269338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096911482
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.9122.8 schema:alternateName University of Hannover
136 schema:name Institut für Mathematische Stochastik, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...