Probabilistic Representations of Solutions of the Forward Equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-03

AUTHORS

B. Rajeev, S. Thangavelu

ABSTRACT

In this paper we prove a stochastic representation for solutions of the evolution equation where L ∗ is the formal adjoint of a second order elliptic differential operator L, with smooth coefficients, corresponding to the infinitesimal generator of a finite dimensional diffusion (Xt). Given ψ0 = ψ, a distribution with compact support, this representation has the form ψt = E(Yt(ψ)) where the process (Yt(ψ)) is the solution of a stochastic partial differential equation connected with the stochastic differential equation for (Xt) via Ito’s formula. More... »

PAGES

139-162

References to SciGraph publications

  • 2003-08. Probabilistic representations of solutions to the heat equation in PROCEEDINGS - MATHEMATICAL SCIENCES
  • 1965. Markov Processes, Volume 1 in NONE
  • 2001. From Tanaka’s Formula to Ito’s Formula: Distributions, Tensor Products and Local Times in SÉMINAIRE DE PROBABILITÉS XXXV
  • 1981-07. Stochastic evolution equations in JOURNAL OF SOVIET MATHEMATICS
  • 1982. Mecanique aleatoire in ECOLE D'ETÉ DE PROBABILITÉS DE SAINT-FLOUR X - 1980
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11118-007-9074-0

    DOI

    http://dx.doi.org/10.1007/s11118-007-9074-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032530722


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Indian Statistical Institute", 
              "id": "https://www.grid.ac/institutes/grid.39953.35", 
              "name": [
                "Statistics and Mathematics Unit, Indian Statistical Institute, 560 059, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rajeev", 
            "givenName": "B.", 
            "id": "sg:person.014733667677.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014733667677.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Science Bangalore", 
              "id": "https://www.grid.ac/institutes/grid.34980.36", 
              "name": [
                "Department of Mathematics, Indian Institute of Science, 560 012, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thangavelu", 
            "givenName": "S.", 
            "id": "sg:person.011431543043.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011431543043.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02829609", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005568891", 
              "https://doi.org/10.1007/bf02829609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0095618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009551028", 
              "https://doi.org/10.1007/bfb0095618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-44671-2_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013068276", 
              "https://doi.org/10.1007/978-3-540-44671-2_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17442509008833618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021751721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17442507908833142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031629681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(90)90260-i", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033431538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(90)90260-i", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033431538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-00031-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033493461", 
              "https://doi.org/10.1007/978-3-662-00031-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-00031-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033493461", 
              "https://doi.org/10.1007/978-3-662-00031-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-268201-8.50010-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040414787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01084893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044709992", 
              "https://doi.org/10.1007/bf01084893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01084893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044709992", 
              "https://doi.org/10.1007/bf01084893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219025709003902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062987095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9783110845563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096921236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611970234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098556616"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-03", 
        "datePublishedReg": "2008-03-01", 
        "description": "In this paper we prove a stochastic representation for solutions of the evolution equation where L \u2217 is the formal adjoint of a second order elliptic differential operator L, with smooth coefficients, corresponding to the infinitesimal generator of a finite dimensional diffusion (Xt). Given \u03c80 = \u03c8, a distribution with compact support, this representation has the form \u03c8t = E(Yt(\u03c8)) where the process (Yt(\u03c8)) is the solution of a stochastic partial differential equation connected with the stochastic differential equation for (Xt) via Ito\u2019s formula.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11118-007-9074-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1135984", 
            "issn": [
              "0926-2601", 
              "1572-929X"
            ], 
            "name": "Potential Analysis", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "Probabilistic Representations of Solutions of the Forward Equations", 
        "pagination": "139-162", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9af8db3ce8115778718a5250cfe54bdca461962fa84c7b1ed6fe6f780b500146"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11118-007-9074-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032530722"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11118-007-9074-0", 
          "https://app.dimensions.ai/details/publication/pub.1032530722"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000533.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11118-007-9074-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11118-007-9074-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11118-007-9074-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11118-007-9074-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11118-007-9074-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    112 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11118-007-9074-0 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N8064d36ede52467bbde9337912dee43c
    4 schema:citation sg:pub.10.1007/978-3-540-44671-2_25
    5 sg:pub.10.1007/978-3-662-00031-1
    6 sg:pub.10.1007/bf01084893
    7 sg:pub.10.1007/bf02829609
    8 sg:pub.10.1007/bfb0095618
    9 https://doi.org/10.1016/0377-2217(90)90260-i
    10 https://doi.org/10.1016/b978-0-12-268201-8.50010-4
    11 https://doi.org/10.1080/17442507908833142
    12 https://doi.org/10.1080/17442509008833618
    13 https://doi.org/10.1137/1.9781611970234
    14 https://doi.org/10.1142/s0219025709003902
    15 https://doi.org/10.1515/9783110845563
    16 schema:datePublished 2008-03
    17 schema:datePublishedReg 2008-03-01
    18 schema:description In this paper we prove a stochastic representation for solutions of the evolution equation where L ∗ is the formal adjoint of a second order elliptic differential operator L, with smooth coefficients, corresponding to the infinitesimal generator of a finite dimensional diffusion (Xt). Given ψ0 = ψ, a distribution with compact support, this representation has the form ψt = E(Yt(ψ)) where the process (Yt(ψ)) is the solution of a stochastic partial differential equation connected with the stochastic differential equation for (Xt) via Ito’s formula.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N94f32d874e7f4d9f8f40f1facb7733c0
    23 Neeecb21ea8e54e24a199babce3698603
    24 sg:journal.1135984
    25 schema:name Probabilistic Representations of Solutions of the Forward Equations
    26 schema:pagination 139-162
    27 schema:productId N19b48e9260124d44951bf9f4b4c3995e
    28 N238e79b6488a48019200b5d03f5b4239
    29 N3338dd0df2ff43ceaf9d51de4e71f255
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032530722
    31 https://doi.org/10.1007/s11118-007-9074-0
    32 schema:sdDatePublished 2019-04-10T20:51
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Nd09145b47f084a09885cd6243310eaf1
    35 schema:url http://link.springer.com/10.1007%2Fs11118-007-9074-0
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N19b48e9260124d44951bf9f4b4c3995e schema:name dimensions_id
    40 schema:value pub.1032530722
    41 rdf:type schema:PropertyValue
    42 N238e79b6488a48019200b5d03f5b4239 schema:name readcube_id
    43 schema:value 9af8db3ce8115778718a5250cfe54bdca461962fa84c7b1ed6fe6f780b500146
    44 rdf:type schema:PropertyValue
    45 N3338dd0df2ff43ceaf9d51de4e71f255 schema:name doi
    46 schema:value 10.1007/s11118-007-9074-0
    47 rdf:type schema:PropertyValue
    48 N8064d36ede52467bbde9337912dee43c rdf:first sg:person.014733667677.87
    49 rdf:rest N9241197c30e2492597819f52146b07b9
    50 N9241197c30e2492597819f52146b07b9 rdf:first sg:person.011431543043.16
    51 rdf:rest rdf:nil
    52 N94f32d874e7f4d9f8f40f1facb7733c0 schema:issueNumber 2
    53 rdf:type schema:PublicationIssue
    54 Nd09145b47f084a09885cd6243310eaf1 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 Neeecb21ea8e54e24a199babce3698603 schema:volumeNumber 28
    57 rdf:type schema:PublicationVolume
    58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Mathematical Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Statistics
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1135984 schema:issn 0926-2601
    65 1572-929X
    66 schema:name Potential Analysis
    67 rdf:type schema:Periodical
    68 sg:person.011431543043.16 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
    69 schema:familyName Thangavelu
    70 schema:givenName S.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011431543043.16
    72 rdf:type schema:Person
    73 sg:person.014733667677.87 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
    74 schema:familyName Rajeev
    75 schema:givenName B.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014733667677.87
    77 rdf:type schema:Person
    78 sg:pub.10.1007/978-3-540-44671-2_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013068276
    79 https://doi.org/10.1007/978-3-540-44671-2_25
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/978-3-662-00031-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033493461
    82 https://doi.org/10.1007/978-3-662-00031-1
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf01084893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044709992
    85 https://doi.org/10.1007/bf01084893
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf02829609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005568891
    88 https://doi.org/10.1007/bf02829609
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bfb0095618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009551028
    91 https://doi.org/10.1007/bfb0095618
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/0377-2217(90)90260-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1033431538
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/b978-0-12-268201-8.50010-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040414787
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1080/17442507908833142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031629681
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1080/17442509008833618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021751721
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1137/1.9781611970234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556616
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1142/s0219025709003902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062987095
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1515/9783110845563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096921236
    106 rdf:type schema:CreativeWork
    107 https://www.grid.ac/institutes/grid.34980.36 schema:alternateName Indian Institute of Science Bangalore
    108 schema:name Department of Mathematics, Indian Institute of Science, 560 012, Bangalore, India
    109 rdf:type schema:Organization
    110 https://www.grid.ac/institutes/grid.39953.35 schema:alternateName Indian Statistical Institute
    111 schema:name Statistics and Mathematics Unit, Indian Statistical Institute, 560 059, Bangalore, India
    112 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...