Boundary Harnack Principle for p-harmonic Functions in Smooth Euclidean Domains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-05

AUTHORS

Hiroaki Aikawa, Tero Kilpeläinen, Nageswari Shanmugalingam, Xiao Zhong

ABSTRACT

We establish a scale-invariant version of the boundary Harnack principle for p-harmonic functions in Euclidean C1,1-domains and obtain estimates for the decay rates of positive p-harmonic functions vanishing on a segment of the boundary in terms of the distance to the boundary. We use these estimates to study the behavior of conformal Martin kernel functions and positive p-superharmonic functions near the boundary of the domain. More... »

PAGES

281-301

References to SciGraph publications

  • 1986-12. Singular solutions of thep-laplace equation in MATHEMATISCHE ANNALEN
  • 2002-12. Polar coordinates in Carnot groups in MATHEMATISCHE ZEITSCHRIFT
  • 1995-12. Uniform domains and quasiconformal mappings on the Heisenberg group in MANUSCRIPTA MATHEMATICA
  • 2001. Classical Potential Theory in NONE
  • 1977-09. Estimates of harmonic measure in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 1954-12. On the Harnack inequality for linear elliptic equations in JOURNAL D'ANALYSE MATHÉMATIQUE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11118-006-9036-y

    DOI

    http://dx.doi.org/10.1007/s11118-006-9036-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013264972


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hokkaido University", 
              "id": "https://www.grid.ac/institutes/grid.39158.36", 
              "name": [
                "Department of Mathematics, Hokkaido University, 060-0810, Sapporo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aikawa", 
            "givenName": "Hiroaki", 
            "id": "sg:person.011340300275.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011340300275.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Jyv\u00e4skyl\u00e4", 
              "id": "https://www.grid.ac/institutes/grid.9681.6", 
              "name": [
                "Department of Mathematics and Statistics, University of Jyv\u00e4skyl\u00e4, P.O. Box 35 (MaD), 40014, University of Jyv\u00e4skyl\u00e4, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kilpel\u00e4inen", 
            "givenName": "Tero", 
            "id": "sg:person.011161247457.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cincinnati", 
              "id": "https://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "Department of Mathematical Sciences, University of Cincinnati, P.O. Box 210025, 45221\u20130025, Cincinnati, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shanmugalingam", 
            "givenName": "Nageswari", 
            "id": "sg:person.015446372063.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015446372063.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Jyv\u00e4skyl\u00e4", 
              "id": "https://www.grid.ac/institutes/grid.9681.6", 
              "name": [
                "Department of Mathematics and Statistics, University of Jyv\u00e4skyl\u00e4, P.O. Box 35 (MaD), 40014, University of Jyv\u00e4skyl\u00e4, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhong", 
            "givenName": "Xiao", 
            "id": "sg:person.07566574466.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07566574466.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1112/jlms/s2-29.2.269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000819012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-002-0441-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002171283", 
              "https://doi.org/10.1007/s00209-002-0441-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1941-0003919-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003400917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01459140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004450777", 
              "https://doi.org/10.1007/bf01459140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01459140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004450777", 
              "https://doi.org/10.1007/bf01459140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1004646987", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-0233-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004646987", 
              "https://doi.org/10.1007/978-1-4471-0233-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-0233-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004646987", 
              "https://doi.org/10.1007/978-1-4471-0233-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02567994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005951627", 
              "https://doi.org/10.1007/bf02567994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02567994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005951627", 
              "https://doi.org/10.1007/bf02567994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160250303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010364105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160250303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010364105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-8708(82)90055-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011592590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-1982-0640231-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021957294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-247x(83)90225-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023357982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00280445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037154411", 
              "https://doi.org/10.1007/bf00280445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00280445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037154411", 
              "https://doi.org/10.1007/bf00280445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02787725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044703852", 
              "https://doi.org/10.1007/bf02787725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02787725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044703852", 
              "https://doi.org/10.1007/bf02787725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-91-06408-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064419711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1307/mmj/1114021091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064977108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2043560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069710095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2944347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070142658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2969/jmsj/05310119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070931973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2969/jmsj/1145287101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070932550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/aif.70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073139361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/aif.719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073139382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/aif.720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073139384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/aif.767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073139435"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-05", 
        "datePublishedReg": "2007-05-01", 
        "description": "We establish a scale-invariant version of the boundary Harnack principle for p-harmonic functions in Euclidean C1,1-domains and obtain estimates for the decay rates of positive p-harmonic functions vanishing on a segment of the boundary in terms of the distance to the boundary. We use these estimates to study the behavior of conformal Martin kernel functions and positive p-superharmonic functions near the boundary of the domain.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11118-006-9036-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135984", 
            "issn": [
              "0926-2601", 
              "1572-929X"
            ], 
            "name": "Potential Analysis", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Boundary Harnack Principle for p-harmonic Functions in Smooth Euclidean Domains", 
        "pagination": "281-301", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3f315d2388be44b6de3c2b3d221fac7a594af97c92cbe06a847de9059075bae9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11118-006-9036-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013264972"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11118-006-9036-y", 
          "https://app.dimensions.ai/details/publication/pub.1013264972"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000531.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11118-006-9036-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11118-006-9036-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11118-006-9036-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11118-006-9036-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11118-006-9036-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    162 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11118-006-9036-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ne6c54e5b42bf4a5ba42c29984064b073
    4 schema:citation sg:pub.10.1007/978-1-4471-0233-5
    5 sg:pub.10.1007/bf00280445
    6 sg:pub.10.1007/bf01459140
    7 sg:pub.10.1007/bf02567994
    8 sg:pub.10.1007/bf02787725
    9 sg:pub.10.1007/s00209-002-0441-7
    10 https://app.dimensions.ai/details/publication/pub.1004646987
    11 https://doi.org/10.1002/cpa.3160250303
    12 https://doi.org/10.1016/0001-8708(82)90055-x
    13 https://doi.org/10.1016/0022-247x(83)90225-1
    14 https://doi.org/10.1090/s0002-9939-1982-0640231-8
    15 https://doi.org/10.1090/s0002-9947-1941-0003919-6
    16 https://doi.org/10.1112/jlms/s2-29.2.269
    17 https://doi.org/10.1215/s0012-7094-91-06408-2
    18 https://doi.org/10.1307/mmj/1114021091
    19 https://doi.org/10.2307/2043560
    20 https://doi.org/10.2307/2944347
    21 https://doi.org/10.2969/jmsj/05310119
    22 https://doi.org/10.2969/jmsj/1145287101
    23 https://doi.org/10.5802/aif.70
    24 https://doi.org/10.5802/aif.719
    25 https://doi.org/10.5802/aif.720
    26 https://doi.org/10.5802/aif.767
    27 schema:datePublished 2007-05
    28 schema:datePublishedReg 2007-05-01
    29 schema:description We establish a scale-invariant version of the boundary Harnack principle for p-harmonic functions in Euclidean C1,1-domains and obtain estimates for the decay rates of positive p-harmonic functions vanishing on a segment of the boundary in terms of the distance to the boundary. We use these estimates to study the behavior of conformal Martin kernel functions and positive p-superharmonic functions near the boundary of the domain.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N59d6d6ed854c43b59e84afd92e690838
    34 N811c6b7b3c5e4fdab1111bc8b1d58f87
    35 sg:journal.1135984
    36 schema:name Boundary Harnack Principle for p-harmonic Functions in Smooth Euclidean Domains
    37 schema:pagination 281-301
    38 schema:productId N023b89cb7be448cdb20b1a37315c2590
    39 N88a80f49c3ed46c5a3700dde16440492
    40 Ne63c2a15b7144a5fa87f77121c0a63ff
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013264972
    42 https://doi.org/10.1007/s11118-006-9036-y
    43 schema:sdDatePublished 2019-04-10T20:50
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N1e92792d0f9543e8a4e3a4911415317c
    46 schema:url http://link.springer.com/10.1007%2Fs11118-006-9036-y
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N023b89cb7be448cdb20b1a37315c2590 schema:name doi
    51 schema:value 10.1007/s11118-006-9036-y
    52 rdf:type schema:PropertyValue
    53 N1e92792d0f9543e8a4e3a4911415317c schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N59d6d6ed854c43b59e84afd92e690838 schema:issueNumber 3
    56 rdf:type schema:PublicationIssue
    57 N7a67723cc2fc404b95638aaee8349dc4 rdf:first sg:person.07566574466.69
    58 rdf:rest rdf:nil
    59 N811c6b7b3c5e4fdab1111bc8b1d58f87 schema:volumeNumber 26
    60 rdf:type schema:PublicationVolume
    61 N88a80f49c3ed46c5a3700dde16440492 schema:name dimensions_id
    62 schema:value pub.1013264972
    63 rdf:type schema:PropertyValue
    64 N8efcfd9ada9d4c2aa6f1e587f650a90b rdf:first sg:person.015446372063.60
    65 rdf:rest N7a67723cc2fc404b95638aaee8349dc4
    66 Nd7f6a493cf884468bd0c4db04059c73e rdf:first sg:person.011161247457.34
    67 rdf:rest N8efcfd9ada9d4c2aa6f1e587f650a90b
    68 Ne63c2a15b7144a5fa87f77121c0a63ff schema:name readcube_id
    69 schema:value 3f315d2388be44b6de3c2b3d221fac7a594af97c92cbe06a847de9059075bae9
    70 rdf:type schema:PropertyValue
    71 Ne6c54e5b42bf4a5ba42c29984064b073 rdf:first sg:person.011340300275.28
    72 rdf:rest Nd7f6a493cf884468bd0c4db04059c73e
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Pure Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1135984 schema:issn 0926-2601
    80 1572-929X
    81 schema:name Potential Analysis
    82 rdf:type schema:Periodical
    83 sg:person.011161247457.34 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
    84 schema:familyName Kilpeläinen
    85 schema:givenName Tero
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34
    87 rdf:type schema:Person
    88 sg:person.011340300275.28 schema:affiliation https://www.grid.ac/institutes/grid.39158.36
    89 schema:familyName Aikawa
    90 schema:givenName Hiroaki
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011340300275.28
    92 rdf:type schema:Person
    93 sg:person.015446372063.60 schema:affiliation https://www.grid.ac/institutes/grid.24827.3b
    94 schema:familyName Shanmugalingam
    95 schema:givenName Nageswari
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015446372063.60
    97 rdf:type schema:Person
    98 sg:person.07566574466.69 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
    99 schema:familyName Zhong
    100 schema:givenName Xiao
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07566574466.69
    102 rdf:type schema:Person
    103 sg:pub.10.1007/978-1-4471-0233-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004646987
    104 https://doi.org/10.1007/978-1-4471-0233-5
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/bf00280445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037154411
    107 https://doi.org/10.1007/bf00280445
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/bf01459140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004450777
    110 https://doi.org/10.1007/bf01459140
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/bf02567994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005951627
    113 https://doi.org/10.1007/bf02567994
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/bf02787725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044703852
    116 https://doi.org/10.1007/bf02787725
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s00209-002-0441-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002171283
    119 https://doi.org/10.1007/s00209-002-0441-7
    120 rdf:type schema:CreativeWork
    121 https://app.dimensions.ai/details/publication/pub.1004646987 schema:CreativeWork
    122 https://doi.org/10.1002/cpa.3160250303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010364105
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/0001-8708(82)90055-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011592590
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0022-247x(83)90225-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023357982
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1090/s0002-9939-1982-0640231-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021957294
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1090/s0002-9947-1941-0003919-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003400917
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1112/jlms/s2-29.2.269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000819012
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1215/s0012-7094-91-06408-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419711
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1307/mmj/1114021091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064977108
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.2307/2043560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069710095
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.2307/2944347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070142658
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.2969/jmsj/05310119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070931973
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.2969/jmsj/1145287101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070932550
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.5802/aif.70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139361
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.5802/aif.719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139382
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.5802/aif.720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139384
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.5802/aif.767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139435
    153 rdf:type schema:CreativeWork
    154 https://www.grid.ac/institutes/grid.24827.3b schema:alternateName University of Cincinnati
    155 schema:name Department of Mathematical Sciences, University of Cincinnati, P.O. Box 210025, 45221–0025, Cincinnati, OH, USA
    156 rdf:type schema:Organization
    157 https://www.grid.ac/institutes/grid.39158.36 schema:alternateName Hokkaido University
    158 schema:name Department of Mathematics, Hokkaido University, 060-0810, Sapporo, Japan
    159 rdf:type schema:Organization
    160 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
    161 schema:name Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35 (MaD), 40014, University of Jyväskylä, Finland
    162 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...