M-ideals and split faces of the quasi state space of a non-unital ordered Banach space View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

Anindya Ghatak, Anil Kumar Karn

ABSTRACT

We characterize M-ideals in order smooth ∞-normed spaces by extending the notion of split faces of the state space to those of the quasi-state space. We also characterize approximate order unit spaces as those order smooth ∞-normed spaces V that are M-ideals in V~. Here V~ is the order unit space obtained by adjoining an order unit to V. To prove these results, we develop an order theoretic version of the “Alfsen-Efffros’ cone decomposition theorem” for order smooth 1-normed spaces. (As a quick application of this result, we sharpen a result on the extension of bounded positive linear functionals on subspaces of order smooth ∞-normed spaces). More... »

PAGES

413-429

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11117-018-0614-1

DOI

http://dx.doi.org/10.1007/s11117-018-0614-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107254440


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Science Education and Research", 
          "id": "https://www.grid.ac/institutes/grid.419643.d", 
          "name": [
            "School of Mathematical Sciences, National Institute of Science Education and Research, HBNI, 752050, Jatni, Khurda, Bhubaneswar, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghatak", 
        "givenName": "Anindya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Science Education and Research", 
          "id": "https://www.grid.ac/institutes/grid.419643.d", 
          "name": [
            "School of Mathematical Sciences, National Institute of Science Education and Research, HBNI, 752050, Jatni, Khurda, Bhubaneswar, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karn", 
        "givenName": "Anil Kumar", 
        "id": "sg:person.015242535107.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015242535107.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0059130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011122270", 
          "https://doi.org/10.1007/bfb0059130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0059130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011122270", 
          "https://doi.org/10.1007/bfb0059130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/s1-39.1.730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012263443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-21.3.415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023728265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1977-0430747-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027418669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11117-009-0029-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034713482", 
          "https://doi.org/10.1007/s11117-009-0029-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11117-009-0029-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034713482", 
          "https://doi.org/10.1007/s11117-009-0029-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1042810640", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0084355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042810640", 
          "https://doi.org/10.1007/bfb0084355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0084355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042810640", 
          "https://doi.org/10.1007/bfb0084355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-14.3.399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050481027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65009-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052434500", 
          "https://doi.org/10.1007/978-3-642-65009-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65009-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052434500", 
          "https://doi.org/10.1007/978-3-642-65009-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676202"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We characterize M-ideals in order smooth \u221e-normed spaces by extending the notion of split faces of the state space to those of the quasi-state space. We also characterize approximate order unit spaces as those order smooth \u221e-normed spaces V that are M-ideals in V~. Here V~ is the order unit space obtained by adjoining an order unit to V. To prove these results, we develop an order theoretic version of the \u201cAlfsen-Efffros\u2019 cone decomposition theorem\u201d for order smooth 1-normed spaces. (As a quick application of this result, we sharpen a result on the extension of bounded positive linear functionals on subspaces of order smooth \u221e-normed spaces).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11117-018-0614-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1134502", 
        "issn": [
          "1385-1292", 
          "1572-9281"
        ], 
        "name": "Positivity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "M-ideals and split faces of the quasi state space of a non-unital ordered Banach space", 
    "pagination": "413-429", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "39aeb0b3892b61e444d9b005b8709ef38ca6b60304c0f4bb9a880647c29ff025"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11117-018-0614-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107254440"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11117-018-0614-1", 
      "https://app.dimensions.ai/details/publication/pub.1107254440"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88217_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11117-018-0614-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11117-018-0614-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11117-018-0614-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11117-018-0614-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11117-018-0614-1'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11117-018-0614-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd8fe3fe4a2b04528a8cdd02a67fa6e1f
4 schema:citation sg:pub.10.1007/978-3-642-65009-3
5 sg:pub.10.1007/bfb0059130
6 sg:pub.10.1007/bfb0084355
7 sg:pub.10.1007/s11117-009-0029-0
8 https://app.dimensions.ai/details/publication/pub.1042810640
9 https://doi.org/10.1090/s0002-9947-1977-0430747-4
10 https://doi.org/10.1112/jlms/s1-39.1.730
11 https://doi.org/10.1112/plms/s3-14.3.399
12 https://doi.org/10.1112/plms/s3-21.3.415
13 https://doi.org/10.2307/1970895
14 schema:datePublished 2019-04
15 schema:datePublishedReg 2019-04-01
16 schema:description We characterize M-ideals in order smooth ∞-normed spaces by extending the notion of split faces of the state space to those of the quasi-state space. We also characterize approximate order unit spaces as those order smooth ∞-normed spaces V that are M-ideals in V~. Here V~ is the order unit space obtained by adjoining an order unit to V. To prove these results, we develop an order theoretic version of the “Alfsen-Efffros’ cone decomposition theorem” for order smooth 1-normed spaces. (As a quick application of this result, we sharpen a result on the extension of bounded positive linear functionals on subspaces of order smooth ∞-normed spaces).
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N0a427159fcf54811af0e826a4e8bc833
21 N55fb0233f76e440fbc7775dd2bd62ef3
22 sg:journal.1134502
23 schema:name M-ideals and split faces of the quasi state space of a non-unital ordered Banach space
24 schema:pagination 413-429
25 schema:productId N467193e64f3445f08506f3f7ab98b62e
26 Ndd4ad5b1a64d4084a317e03d4810c5d4
27 Neba1fa5ad55048fdaa3002d2eb3c189e
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107254440
29 https://doi.org/10.1007/s11117-018-0614-1
30 schema:sdDatePublished 2019-04-11T13:06
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Ne43b1e2115a44012b444c6e0f135b0b2
33 schema:url https://link.springer.com/10.1007%2Fs11117-018-0614-1
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0a427159fcf54811af0e826a4e8bc833 schema:volumeNumber 23
38 rdf:type schema:PublicationVolume
39 N0df9501724934f7ca4dff1d52dacd251 rdf:first sg:person.015242535107.25
40 rdf:rest rdf:nil
41 N2c3156f6764b42f594ebbbaedff4399e schema:affiliation https://www.grid.ac/institutes/grid.419643.d
42 schema:familyName Ghatak
43 schema:givenName Anindya
44 rdf:type schema:Person
45 N467193e64f3445f08506f3f7ab98b62e schema:name doi
46 schema:value 10.1007/s11117-018-0614-1
47 rdf:type schema:PropertyValue
48 N55fb0233f76e440fbc7775dd2bd62ef3 schema:issueNumber 2
49 rdf:type schema:PublicationIssue
50 Nd8fe3fe4a2b04528a8cdd02a67fa6e1f rdf:first N2c3156f6764b42f594ebbbaedff4399e
51 rdf:rest N0df9501724934f7ca4dff1d52dacd251
52 Ndd4ad5b1a64d4084a317e03d4810c5d4 schema:name dimensions_id
53 schema:value pub.1107254440
54 rdf:type schema:PropertyValue
55 Ne43b1e2115a44012b444c6e0f135b0b2 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Neba1fa5ad55048fdaa3002d2eb3c189e schema:name readcube_id
58 schema:value 39aeb0b3892b61e444d9b005b8709ef38ca6b60304c0f4bb9a880647c29ff025
59 rdf:type schema:PropertyValue
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
64 schema:name Pure Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1134502 schema:issn 1385-1292
67 1572-9281
68 schema:name Positivity
69 rdf:type schema:Periodical
70 sg:person.015242535107.25 schema:affiliation https://www.grid.ac/institutes/grid.419643.d
71 schema:familyName Karn
72 schema:givenName Anil Kumar
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015242535107.25
74 rdf:type schema:Person
75 sg:pub.10.1007/978-3-642-65009-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052434500
76 https://doi.org/10.1007/978-3-642-65009-3
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bfb0059130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011122270
79 https://doi.org/10.1007/bfb0059130
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bfb0084355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042810640
82 https://doi.org/10.1007/bfb0084355
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s11117-009-0029-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034713482
85 https://doi.org/10.1007/s11117-009-0029-0
86 rdf:type schema:CreativeWork
87 https://app.dimensions.ai/details/publication/pub.1042810640 schema:CreativeWork
88 https://doi.org/10.1090/s0002-9947-1977-0430747-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027418669
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1112/jlms/s1-39.1.730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012263443
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1112/plms/s3-14.3.399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050481027
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1112/plms/s3-21.3.415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023728265
95 rdf:type schema:CreativeWork
96 https://doi.org/10.2307/1970895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676202
97 rdf:type schema:CreativeWork
98 https://www.grid.ac/institutes/grid.419643.d schema:alternateName National Institute of Science Education and Research
99 schema:name School of Mathematical Sciences, National Institute of Science Education and Research, HBNI, 752050, Jatni, Khurda, Bhubaneswar, India
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...