Gaussian lower bound for the Neumann Green function of a general parabolic operator View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-09

AUTHORS

Mourad Choulli, Laurent Kayser

ABSTRACT

Based on the fact that the Neumann Green function can be constructed as a perturbation of the fundamental solution by a single-layer potential, we establish a Gaussian lower bound for the Neumann Green function for a general parabolic operator. We build our analysis on classical tools coming from the construction of a fundamental solution of a general parabolic operator by means of the so-called parametrix method. At the same time we provide a simple proof for Gaussian two-sided bounds for the fundamental solution. More... »

PAGES

625-646

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11117-014-0319-z

DOI

http://dx.doi.org/10.1007/s11117-014-0319-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020500119


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut \u00c9lie Cartan de Lorraine", 
          "id": "https://www.grid.ac/institutes/grid.462063.5", 
          "name": [
            "Institut Elie Cartan de Lorraine, UMR CNRS 7502, Universit\u00e9 de Lorraine, Boulevard des Aiguillettes BP 70239 54506 VANDOEUVRE LES NANCY Cedex, Ile du Saulcy, 57045, Metz Cedex 1, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choulli", 
        "givenName": "Mourad", 
        "id": "sg:person.010405231426.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010405231426.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut \u00c9lie Cartan de Lorraine", 
          "id": "https://www.grid.ac/institutes/grid.462063.5", 
          "name": [
            "Institut Elie Cartan de Lorraine, UMR CNRS 7502, Universit\u00e9 de Lorraine, Boulevard des Aiguillettes BP 70239 54506 VANDOEUVRE LES NANCY Cedex, Ile du Saulcy, 57045, Metz Cedex 1, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kayser", 
        "givenName": "Laurent", 
        "id": "sg:person.012555326503.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555326503.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9904-1967-11830-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001066483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2616(200009)217:1<13::aid-mana13>3.0.co;2-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002534118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2616(200009)217:1<13::aid-mana13>3.0.co;2-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002534118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03015067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005644953", 
          "https://doi.org/10.1007/bf03015067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03015067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005644953", 
          "https://doi.org/10.1007/bf03015067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/blms/24.5.475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010848172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2011.07.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011688591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(90)90106-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011831682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160170106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018340366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160170106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018340366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2013.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018349400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021016997", 
          "https://doi.org/10.1007/bf00251802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021016997", 
          "https://doi.org/10.1007/bf00251802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11118-006-9026-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029029753", 
          "https://doi.org/10.1007/s11118-006-9026-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-62.2.373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030583114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/s2-34.3.473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033130417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1035993833", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-37689-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035993833", 
          "https://doi.org/10.1007/3-540-37689-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-37689-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035993833", 
          "https://doi.org/10.1007/3-540-37689-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/15/3/302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036132436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02399203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044505939", 
          "https://doi.org/10.1007/bf02399203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0074089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049838168", 
          "https://doi.org/10.1007/bfb0074089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009117904000000711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2372841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/cpaa.2006.5.447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071731310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-4-431-65859-7_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089801059", 
          "https://doi.org/10.1007/978-4-431-65859-7_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511566158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511549762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/3302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098835892"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "Based on the fact that the Neumann Green function can be constructed as a perturbation of the fundamental solution by a single-layer potential, we establish a Gaussian lower bound for the Neumann Green function for a general parabolic operator. We build our analysis on classical tools coming from the construction of a fundamental solution of a general parabolic operator by means of the so-called parametrix method. At the same time we provide a simple proof for Gaussian two-sided bounds for the fundamental solution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11117-014-0319-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134502", 
        "issn": [
          "1385-1292", 
          "1572-9281"
        ], 
        "name": "Positivity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Gaussian lower bound for the Neumann Green function of a general parabolic operator", 
    "pagination": "625-646", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "61ae15851fca110f3eb3d1ae69fa1011b36d362727dde94b751bada55517d8d6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11117-014-0319-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020500119"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11117-014-0319-z", 
      "https://app.dimensions.ai/details/publication/pub.1020500119"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11117-014-0319-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11117-014-0319-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11117-014-0319-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11117-014-0319-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11117-014-0319-z'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11117-014-0319-z schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N6353d8b347a2469f8a3280adcbe28b68
4 schema:citation sg:pub.10.1007/3-540-37689-5
5 sg:pub.10.1007/978-4-431-65859-7_6
6 sg:pub.10.1007/bf00251802
7 sg:pub.10.1007/bf02399203
8 sg:pub.10.1007/bf03015067
9 sg:pub.10.1007/bfb0074089
10 sg:pub.10.1007/s11118-006-9026-0
11 https://app.dimensions.ai/details/publication/pub.1035993833
12 https://doi.org/10.1002/1522-2616(200009)217:1<13::aid-mana13>3.0.co;2-6
13 https://doi.org/10.1002/cpa.3160170106
14 https://doi.org/10.1016/0022-1236(90)90106-u
15 https://doi.org/10.1016/j.jde.2011.07.025
16 https://doi.org/10.1016/j.jde.2013.01.003
17 https://doi.org/10.1017/cbo9780511549762
18 https://doi.org/10.1017/cbo9780511566158
19 https://doi.org/10.1088/0266-5611/15/3/302
20 https://doi.org/10.1090/s0002-9904-1967-11830-5
21 https://doi.org/10.1112/blms/24.5.475
22 https://doi.org/10.1112/jlms/s2-34.3.473
23 https://doi.org/10.1112/plms/s3-62.2.373
24 https://doi.org/10.1142/3302
25 https://doi.org/10.1214/009117904000000711
26 https://doi.org/10.2307/2372841
27 https://doi.org/10.3934/cpaa.2006.5.447
28 schema:datePublished 2015-09
29 schema:datePublishedReg 2015-09-01
30 schema:description Based on the fact that the Neumann Green function can be constructed as a perturbation of the fundamental solution by a single-layer potential, we establish a Gaussian lower bound for the Neumann Green function for a general parabolic operator. We build our analysis on classical tools coming from the construction of a fundamental solution of a general parabolic operator by means of the so-called parametrix method. At the same time we provide a simple proof for Gaussian two-sided bounds for the fundamental solution.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N5b38ed32d25745ecbcfbbae0d5e01328
35 N6d81f6886e6a4f11aa56129a278abd11
36 sg:journal.1134502
37 schema:name Gaussian lower bound for the Neumann Green function of a general parabolic operator
38 schema:pagination 625-646
39 schema:productId N06763f07994744e9900fb2cd034929b2
40 N5bfc5a4863a5470c97db29ce7c3193e6
41 Nc941412d67d549f1a77c3c6d2d09e04c
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020500119
43 https://doi.org/10.1007/s11117-014-0319-z
44 schema:sdDatePublished 2019-04-10T23:26
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N120b646c55304f3b8497b219dc45c981
47 schema:url http://link.springer.com/10.1007%2Fs11117-014-0319-z
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N06763f07994744e9900fb2cd034929b2 schema:name readcube_id
52 schema:value 61ae15851fca110f3eb3d1ae69fa1011b36d362727dde94b751bada55517d8d6
53 rdf:type schema:PropertyValue
54 N120b646c55304f3b8497b219dc45c981 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N4a3747191c75483597f20cd2ff270c38 rdf:first sg:person.012555326503.33
57 rdf:rest rdf:nil
58 N5b38ed32d25745ecbcfbbae0d5e01328 schema:issueNumber 3
59 rdf:type schema:PublicationIssue
60 N5bfc5a4863a5470c97db29ce7c3193e6 schema:name dimensions_id
61 schema:value pub.1020500119
62 rdf:type schema:PropertyValue
63 N6353d8b347a2469f8a3280adcbe28b68 rdf:first sg:person.010405231426.52
64 rdf:rest N4a3747191c75483597f20cd2ff270c38
65 N6d81f6886e6a4f11aa56129a278abd11 schema:volumeNumber 19
66 rdf:type schema:PublicationVolume
67 Nc941412d67d549f1a77c3c6d2d09e04c schema:name doi
68 schema:value 10.1007/s11117-014-0319-z
69 rdf:type schema:PropertyValue
70 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
71 schema:name Biological Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
74 schema:name Biochemistry and Cell Biology
75 rdf:type schema:DefinedTerm
76 sg:journal.1134502 schema:issn 1385-1292
77 1572-9281
78 schema:name Positivity
79 rdf:type schema:Periodical
80 sg:person.010405231426.52 schema:affiliation https://www.grid.ac/institutes/grid.462063.5
81 schema:familyName Choulli
82 schema:givenName Mourad
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010405231426.52
84 rdf:type schema:Person
85 sg:person.012555326503.33 schema:affiliation https://www.grid.ac/institutes/grid.462063.5
86 schema:familyName Kayser
87 schema:givenName Laurent
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555326503.33
89 rdf:type schema:Person
90 sg:pub.10.1007/3-540-37689-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035993833
91 https://doi.org/10.1007/3-540-37689-5
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-4-431-65859-7_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089801059
94 https://doi.org/10.1007/978-4-431-65859-7_6
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf00251802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021016997
97 https://doi.org/10.1007/bf00251802
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf02399203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044505939
100 https://doi.org/10.1007/bf02399203
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf03015067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005644953
103 https://doi.org/10.1007/bf03015067
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bfb0074089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049838168
106 https://doi.org/10.1007/bfb0074089
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11118-006-9026-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029029753
109 https://doi.org/10.1007/s11118-006-9026-0
110 rdf:type schema:CreativeWork
111 https://app.dimensions.ai/details/publication/pub.1035993833 schema:CreativeWork
112 https://doi.org/10.1002/1522-2616(200009)217:1<13::aid-mana13>3.0.co;2-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002534118
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/cpa.3160170106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018340366
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0022-1236(90)90106-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1011831682
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jde.2011.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011688591
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jde.2013.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018349400
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1017/cbo9780511549762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698176
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1017/cbo9780511566158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679284
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1088/0266-5611/15/3/302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036132436
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1090/s0002-9904-1967-11830-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001066483
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1112/blms/24.5.475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010848172
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1112/jlms/s2-34.3.473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033130417
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1112/plms/s3-62.2.373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030583114
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1142/3302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098835892
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1214/009117904000000711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389191
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2307/2372841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899452
141 rdf:type schema:CreativeWork
142 https://doi.org/10.3934/cpaa.2006.5.447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071731310
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.462063.5 schema:alternateName Institut Élie Cartan de Lorraine
145 schema:name Institut Elie Cartan de Lorraine, UMR CNRS 7502, Université de Lorraine, Boulevard des Aiguillettes BP 70239 54506 VANDOEUVRE LES NANCY Cedex, Ile du Saulcy, 57045, Metz Cedex 1, France
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...