2-Local derivations on von Neumann algebras View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09

AUTHORS

Shavkat Ayupov, Karimbergen Kudaybergenov

ABSTRACT

The paper is devoted to the description of 2-local derivations on von Neumann algebras. Earlier it was proved that every 2-local derivation on a semi-finite von Neumann algebra is a derivation. In this paper, using the analogue of Gleason Theorem for signed measures, we extend this result to type III von Neumann algebras. This implies that on arbitrary von Neumann algebra each 2-local derivation is a derivation. More... »

PAGES

445-455

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11117-014-0307-3

DOI

http://dx.doi.org/10.1007/s11117-014-0307-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026352113


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "International Centre for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.419330.c", 
          "name": [
            "Institute of Mathematics, National University of Uzbekistan, Dormon yoli 29, 100125, Tashkent, Uzbekistan", 
            "The Abdus Salam International Centre For Theoretical Physics (ICTP), Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ayupov", 
        "givenName": "Shavkat", 
        "id": "sg:person.015171675503.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015171675503.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karakalpak State University", 
          "id": "https://www.grid.ac/institutes/grid.78785.35", 
          "name": [
            "Department of Mathematics, Karakalpak State University, Ch. Abdirov 1, 230113, Nukus, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudaybergenov", 
        "givenName": "Karimbergen", 
        "id": "sg:person.015256362475.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015256362475.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-61993-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000334678", 
          "https://doi.org/10.1007/978-3-642-61993-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61993-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000334678", 
          "https://doi.org/10.1007/978-3-642-61993-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1988-0929422-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007178675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2012.04.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010714713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1992-00274-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011027939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-97-04073-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015153523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s12175-014-0215-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034733466", 
          "https://doi.org/10.2478/s12175-014-0215-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-03-07171-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035442460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0013091504001142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053767165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0013091504001142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053767165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0017089512000870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054784363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0017089512000870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054784363"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "The paper is devoted to the description of 2-local derivations on von Neumann algebras. Earlier it was proved that every 2-local derivation on a semi-finite von Neumann algebra is a derivation. In this paper, using the analogue of Gleason Theorem for signed measures, we extend this result to type III von Neumann algebras. This implies that on arbitrary von Neumann algebra each 2-local derivation is a derivation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11117-014-0307-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1134502", 
        "issn": [
          "1385-1292", 
          "1572-9281"
        ], 
        "name": "Positivity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "2-Local derivations on von Neumann algebras", 
    "pagination": "445-455", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7d8a79d957709a9995ab7b4312fae4581fee52394d58b74ac444a96b461b7889"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11117-014-0307-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026352113"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11117-014-0307-3", 
      "https://app.dimensions.ai/details/publication/pub.1026352113"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11117-014-0307-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11117-014-0307-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11117-014-0307-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11117-014-0307-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11117-014-0307-3'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11117-014-0307-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6a13e5c2c92745438ed5de1ad3cb3a29
4 schema:citation sg:pub.10.1007/978-3-642-61993-9
5 sg:pub.10.2478/s12175-014-0215-9
6 https://doi.org/10.1016/j.jmaa.2012.04.064
7 https://doi.org/10.1017/s0013091504001142
8 https://doi.org/10.1017/s0017089512000870
9 https://doi.org/10.1090/s0002-9939-03-07171-5
10 https://doi.org/10.1090/s0002-9939-1988-0929422-1
11 https://doi.org/10.1090/s0002-9939-97-04073-2
12 https://doi.org/10.1090/s0273-0979-1992-00274-4
13 schema:datePublished 2015-09
14 schema:datePublishedReg 2015-09-01
15 schema:description The paper is devoted to the description of 2-local derivations on von Neumann algebras. Earlier it was proved that every 2-local derivation on a semi-finite von Neumann algebra is a derivation. In this paper, using the analogue of Gleason Theorem for signed measures, we extend this result to type III von Neumann algebras. This implies that on arbitrary von Neumann algebra each 2-local derivation is a derivation.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N8d19e41b1e3d44b581545983a6cb45fc
20 Nfdf41aa741644bc584850d1260b68f0b
21 sg:journal.1134502
22 schema:name 2-Local derivations on von Neumann algebras
23 schema:pagination 445-455
24 schema:productId N9a7d0af297c145889b4a81250c89a49b
25 Na73a88f5651e4de69f601043d66c7678
26 Ne41cc218710e4a7695efcc946c4b48d6
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026352113
28 https://doi.org/10.1007/s11117-014-0307-3
29 schema:sdDatePublished 2019-04-10T21:39
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nbf76d67b76d24418b9322a5b275bacee
32 schema:url http://link.springer.com/10.1007%2Fs11117-014-0307-3
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N6a13e5c2c92745438ed5de1ad3cb3a29 rdf:first sg:person.015171675503.83
37 rdf:rest N759d01e4132e43cbb08b4d8e82d60df0
38 N759d01e4132e43cbb08b4d8e82d60df0 rdf:first sg:person.015256362475.77
39 rdf:rest rdf:nil
40 N8d19e41b1e3d44b581545983a6cb45fc schema:issueNumber 3
41 rdf:type schema:PublicationIssue
42 N9a7d0af297c145889b4a81250c89a49b schema:name readcube_id
43 schema:value 7d8a79d957709a9995ab7b4312fae4581fee52394d58b74ac444a96b461b7889
44 rdf:type schema:PropertyValue
45 Na73a88f5651e4de69f601043d66c7678 schema:name dimensions_id
46 schema:value pub.1026352113
47 rdf:type schema:PropertyValue
48 Nbf76d67b76d24418b9322a5b275bacee schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Ne41cc218710e4a7695efcc946c4b48d6 schema:name doi
51 schema:value 10.1007/s11117-014-0307-3
52 rdf:type schema:PropertyValue
53 Nfdf41aa741644bc584850d1260b68f0b schema:volumeNumber 19
54 rdf:type schema:PublicationVolume
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1134502 schema:issn 1385-1292
62 1572-9281
63 schema:name Positivity
64 rdf:type schema:Periodical
65 sg:person.015171675503.83 schema:affiliation https://www.grid.ac/institutes/grid.419330.c
66 schema:familyName Ayupov
67 schema:givenName Shavkat
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015171675503.83
69 rdf:type schema:Person
70 sg:person.015256362475.77 schema:affiliation https://www.grid.ac/institutes/grid.78785.35
71 schema:familyName Kudaybergenov
72 schema:givenName Karimbergen
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015256362475.77
74 rdf:type schema:Person
75 sg:pub.10.1007/978-3-642-61993-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000334678
76 https://doi.org/10.1007/978-3-642-61993-9
77 rdf:type schema:CreativeWork
78 sg:pub.10.2478/s12175-014-0215-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034733466
79 https://doi.org/10.2478/s12175-014-0215-9
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/j.jmaa.2012.04.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010714713
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1017/s0013091504001142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053767165
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1017/s0017089512000870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054784363
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1090/s0002-9939-03-07171-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035442460
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1090/s0002-9939-1988-0929422-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007178675
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1090/s0002-9939-97-04073-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015153523
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1090/s0273-0979-1992-00274-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011027939
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.419330.c schema:alternateName International Centre for Theoretical Physics
96 schema:name Institute of Mathematics, National University of Uzbekistan, Dormon yoli 29, 100125, Tashkent, Uzbekistan
97 The Abdus Salam International Centre For Theoretical Physics (ICTP), Trieste, Italy
98 rdf:type schema:Organization
99 https://www.grid.ac/institutes/grid.78785.35 schema:alternateName Karakalpak State University
100 schema:name Department of Mathematics, Karakalpak State University, Ch. Abdirov 1, 230113, Nukus, Uzbekistan
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...