A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02-22

AUTHORS

Lai-Jiu Lin, Wataru Takahashi

ABSTRACT

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let α > 0 and let A be an α-inverse-strongly monotone mapping of C into H and let B be a maximal monotone operator on H. Let F be a maximal monotone operator on H such that the domain of F is included in C. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let V be a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\gamma}}$$\end{document}-strongly monotone and L-Lipschitzian continuous operator with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\gamma} >0 }$$\end{document} and L > 0. Take \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu, \gamma \in \mathbb R}$$\end{document} as follows:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < \mu < \frac{2\overline{\gamma}}{L^2}, \quad 0 < \gamma < \frac{\overline{\gamma}-\frac{L^2 \mu}{2}}{k}.}$$\end{document}In this paper, under the assumption \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A+B)^{-1}0 \cap F^{-1}0 \neq \emptyset}$$\end{document}, we prove a strong convergence theorem for finding a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${z_0\in (A+B)^{-1}0\cap F^{-1}0}$$\end{document} which is a unique solution of the hierarchical variational inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle (V-\gamma g)z_0, q-z_0 \rangle \geq 0, \quad \forall q\in (A+B)^{-1}0 \cap F^{-1}0.}$$\end{document}Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space which are useful in nonlinear analysis and optimization. More... »

PAGES

429-453

References to SciGraph publications

  • 2012-12-05. Strong Convergence Theorems for Maximal and Inverse-Strongly Monotone Mappings in Hilbert Spaces and Applications in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2003-03. An Iterative Approach to Quadratic Optimization in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1967-06. Convergence theorems for sequences of nonlinear operators in Banach spaces in MATHEMATISCHE ZEITSCHRIFT
  • 1992-05. Approximation of fixed points of nonexpansive mappings in ARCHIV DER MATHEMATIK
  • 2010-05-21. Strong Convergence Theorems for Maximal Monotone Operators with Nonlinear Mappings in Hilbert Spaces in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2003-08. Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11117-012-0161-0

    DOI

    http://dx.doi.org/10.1007/s11117-012-0161-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042877620


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, National Changhua University of Education, Changhua, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.412038.c", 
              "name": [
                "Department of Mathematics, National Changhua University of Education, Changhua, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Lai-Jiu", 
            "id": "sg:person.014151645433.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151645433.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 152-8552, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.32197.3e", 
              "name": [
                "Department of Mathematics, National Changhua University of Education, Changhua, Taiwan", 
                "Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 152-8552, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takahashi", 
            "givenName": "Wataru", 
            "id": "sg:person.013676273067.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013676273067.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1023073621589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014843979", 
              "https://doi.org/10.1023/a:1023073621589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01109805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051858856", 
              "https://doi.org/10.1007/bf01109805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-012-0232-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009577224", 
              "https://doi.org/10.1007/s10957-012-0232-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01190119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027017990", 
              "https://doi.org/10.1007/bf01190119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-010-9713-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035994826", 
              "https://doi.org/10.1007/s10957-010-9713-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025407607560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016546477", 
              "https://doi.org/10.1023/a:1025407607560"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-02-22", 
        "datePublishedReg": "2012-02-22", 
        "description": "Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let \u03b1 >\u00a00 and let A be an \u03b1-inverse-strongly monotone mapping of C into H and let B be a maximal monotone operator on H. Let F be a maximal monotone operator on H such that the domain of F is included in C. Let 0\u00a0< k\u00a0<\u00a01 and let g be a k-contraction of H into itself. Let V be a \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\overline{\\gamma}}$$\\end{document}-strongly monotone and L-Lipschitzian continuous operator with \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\overline{\\gamma} >0 }$$\\end{document} and L >\u00a00. Take \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mu, \\gamma \\in \\mathbb R}$$\\end{document} as follows:\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${0 < \\mu < \\frac{2\\overline{\\gamma}}{L^2}, \\quad 0 < \\gamma < \\frac{\\overline{\\gamma}-\\frac{L^2 \\mu}{2}}{k}.}$$\\end{document}In this paper, under the assumption \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${(A+B)^{-1}0 \\cap F^{-1}0 \\neq \\emptyset}$$\\end{document}, we prove a strong convergence theorem for finding a point \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${z_0\\in (A+B)^{-1}0\\cap F^{-1}0}$$\\end{document} which is a unique solution of the hierarchical variational inequality\n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\langle (V-\\gamma g)z_0, q-z_0 \\rangle \\geq 0, \\quad \\forall q\\in (A+B)^{-1}0 \\cap F^{-1}0.}$$\\end{document}Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space which are useful in nonlinear analysis and optimization.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11117-012-0161-0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1134502", 
            "issn": [
              "1385-1292", 
              "1572-9281"
            ], 
            "name": "Positivity", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "maximal monotone operators", 
          "strong convergence theorems", 
          "Hilbert space", 
          "monotone operators", 
          "convergence theorem", 
          "real Hilbert space", 
          "general iterative method", 
          "variational inequality problem", 
          "\u03b1-inverse", 
          "hierarchical variational inequality", 
          "hierarchical variational inequality problem", 
          "monotone mappings", 
          "continuous operators", 
          "variational inequalities", 
          "convex subset", 
          "iterative method", 
          "inequality problem", 
          "Let 0", 
          "unique solution", 
          "nonlinear analysis", 
          "theorem", 
          "operators", 
          "K-contraction", 
          "space", 
          "nonempty", 
          "optimization", 
          "inequality", 
          "solution", 
          "problem", 
          "assumption", 
          "point", 
          "subset", 
          "applications", 
          "mapping", 
          "domain", 
          "results", 
          "analysis", 
          "method", 
          "paper"
        ], 
        "name": "A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications", 
        "pagination": "429-453", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042877620"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11117-012-0161-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11117-012-0161-0", 
          "https://app.dimensions.ai/details/publication/pub.1042877620"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_577.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11117-012-0161-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11117-012-0161-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11117-012-0161-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11117-012-0161-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11117-012-0161-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      21 PREDICATES      69 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11117-012-0161-0 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N8f4a25aa368d42ef99acb3c7f7f33201
    4 schema:citation sg:pub.10.1007/bf01109805
    5 sg:pub.10.1007/bf01190119
    6 sg:pub.10.1007/s10957-010-9713-2
    7 sg:pub.10.1007/s10957-012-0232-1
    8 sg:pub.10.1023/a:1023073621589
    9 sg:pub.10.1023/a:1025407607560
    10 schema:datePublished 2012-02-22
    11 schema:datePublishedReg 2012-02-22
    12 schema:description Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let α > 0 and let A be an α-inverse-strongly monotone mapping of C into H and let B be a maximal monotone operator on H. Let F be a maximal monotone operator on H such that the domain of F is included in C. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let V be a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\gamma}}$$\end{document}-strongly monotone and L-Lipschitzian continuous operator with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\gamma} >0 }$$\end{document} and L > 0. Take \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu, \gamma \in \mathbb R}$$\end{document} as follows:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < \mu < \frac{2\overline{\gamma}}{L^2}, \quad 0 < \gamma < \frac{\overline{\gamma}-\frac{L^2 \mu}{2}}{k}.}$$\end{document}In this paper, under the assumption \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A+B)^{-1}0 \cap F^{-1}0 \neq \emptyset}$$\end{document}, we prove a strong convergence theorem for finding a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${z_0\in (A+B)^{-1}0\cap F^{-1}0}$$\end{document} which is a unique solution of the hierarchical variational inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle (V-\gamma g)z_0, q-z_0 \rangle \geq 0, \quad \forall q\in (A+B)^{-1}0 \cap F^{-1}0.}$$\end{document}Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space which are useful in nonlinear analysis and optimization.
    13 schema:genre article
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N716d39f371554ba5b00ecf4cea828661
    16 N889d7cdb3a78416f978c5bfc404fd073
    17 sg:journal.1134502
    18 schema:keywords Hilbert space
    19 K-contraction
    20 Let 0
    21 analysis
    22 applications
    23 assumption
    24 continuous operators
    25 convergence theorem
    26 convex subset
    27 domain
    28 general iterative method
    29 hierarchical variational inequality
    30 hierarchical variational inequality problem
    31 inequality
    32 inequality problem
    33 iterative method
    34 mapping
    35 maximal monotone operators
    36 method
    37 monotone mappings
    38 monotone operators
    39 nonempty
    40 nonlinear analysis
    41 operators
    42 optimization
    43 paper
    44 point
    45 problem
    46 real Hilbert space
    47 results
    48 solution
    49 space
    50 strong convergence theorems
    51 subset
    52 theorem
    53 unique solution
    54 variational inequalities
    55 variational inequality problem
    56 α-inverse
    57 schema:name A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications
    58 schema:pagination 429-453
    59 schema:productId Nc25fb977cb3840a7b32bf408f3baa8cd
    60 Ne4966d63032343c2aba6eb003b863976
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042877620
    62 https://doi.org/10.1007/s11117-012-0161-0
    63 schema:sdDatePublished 2022-09-02T15:55
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher N71eb63b08e294a5dab11197a4ee9a4ee
    66 schema:url https://doi.org/10.1007/s11117-012-0161-0
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N451ac550330646258ba2cc4f4bf8da1d rdf:first sg:person.013676273067.15
    71 rdf:rest rdf:nil
    72 N716d39f371554ba5b00ecf4cea828661 schema:issueNumber 3
    73 rdf:type schema:PublicationIssue
    74 N71eb63b08e294a5dab11197a4ee9a4ee schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 N889d7cdb3a78416f978c5bfc404fd073 schema:volumeNumber 16
    77 rdf:type schema:PublicationVolume
    78 N8f4a25aa368d42ef99acb3c7f7f33201 rdf:first sg:person.014151645433.39
    79 rdf:rest N451ac550330646258ba2cc4f4bf8da1d
    80 Nc25fb977cb3840a7b32bf408f3baa8cd schema:name dimensions_id
    81 schema:value pub.1042877620
    82 rdf:type schema:PropertyValue
    83 Ne4966d63032343c2aba6eb003b863976 schema:name doi
    84 schema:value 10.1007/s11117-012-0161-0
    85 rdf:type schema:PropertyValue
    86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Mathematical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Numerical and Computational Mathematics
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1134502 schema:issn 1385-1292
    93 1572-9281
    94 schema:name Positivity
    95 schema:publisher Springer Nature
    96 rdf:type schema:Periodical
    97 sg:person.013676273067.15 schema:affiliation grid-institutes:grid.32197.3e
    98 schema:familyName Takahashi
    99 schema:givenName Wataru
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013676273067.15
    101 rdf:type schema:Person
    102 sg:person.014151645433.39 schema:affiliation grid-institutes:grid.412038.c
    103 schema:familyName Lin
    104 schema:givenName Lai-Jiu
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151645433.39
    106 rdf:type schema:Person
    107 sg:pub.10.1007/bf01109805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051858856
    108 https://doi.org/10.1007/bf01109805
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf01190119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027017990
    111 https://doi.org/10.1007/bf01190119
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s10957-010-9713-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035994826
    114 https://doi.org/10.1007/s10957-010-9713-2
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s10957-012-0232-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009577224
    117 https://doi.org/10.1007/s10957-012-0232-1
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1023/a:1023073621589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014843979
    120 https://doi.org/10.1023/a:1023073621589
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1023/a:1025407607560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016546477
    123 https://doi.org/10.1023/a:1025407607560
    124 rdf:type schema:CreativeWork
    125 grid-institutes:grid.32197.3e schema:alternateName Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 152-8552, Tokyo, Japan
    126 schema:name Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 152-8552, Tokyo, Japan
    127 Department of Mathematics, National Changhua University of Education, Changhua, Taiwan
    128 rdf:type schema:Organization
    129 grid-institutes:grid.412038.c schema:alternateName Department of Mathematics, National Changhua University of Education, Changhua, Taiwan
    130 schema:name Department of Mathematics, National Changhua University of Education, Changhua, Taiwan
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...