A p-theory of ordered normed spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09

AUTHORS

Anil K. Karn

ABSTRACT

We propose a pair of axioms (O.p.1) and (O.p.2) for 1 ≤ p ≤ ∞ and initiate a study of a (matrix) ordered space with a (matrix) norm, in which the (matrix) norm is related to the (matrix) order. We call such a space a (matricially) order smooth p-normed space. The advantage of studying these spaces over Lp-matricially Riesz normed spaces is that every matricially order smooth ∞-normed space can be order embedded in some C*-algebra. We also study the adjoining of an order unit to a (matricially) order smooth ∞-normed space. As a consequence, we sharpen Arveson’s extension theorem of completely positive maps. Another combination of these axioms yields an order theoretic characterization of the set of real numbers amongst ordered normed linear spaces. More... »

PAGES

441-458

Journal

TITLE

Positivity

ISSUE

3

VOLUME

14

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11117-009-0029-0

DOI

http://dx.doi.org/10.1007/s11117-009-0029-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034713482


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Mathematics, Deen Dayal Upadhyaya College, University of Delhi, Karam Pura, 110 015, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karn", 
        "givenName": "Anil K.", 
        "id": "sg:person.012442343071.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012442343071.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-1236(77)90052-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000192820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1997.3160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008671545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.2001.3943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011062821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0059130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011122270", 
          "https://doi.org/10.1007/bfb0059130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0059130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011122270", 
          "https://doi.org/10.1007/bfb0059130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014223727", 
          "https://doi.org/10.1007/bf02392388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(88)90057-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028151078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11117-006-2065-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039609634", 
          "https://doi.org/10.1007/s11117-006-2065-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11117-003-2778-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041736135", 
          "https://doi.org/10.1007/s11117-003-2778-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11117-003-2778-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041736135", 
          "https://doi.org/10.1007/s11117-003-2778-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "We propose a pair of axioms (O.p.1) and (O.p.2) for 1 \u2264 p \u2264 \u221e and initiate a study of a (matrix) ordered space with a (matrix) norm, in which the (matrix) norm is related to the (matrix) order. We call such a space a (matricially) order smooth p-normed space. The advantage of studying these spaces over Lp-matricially Riesz normed spaces is that every matricially order smooth \u221e-normed space can be order embedded in some C*-algebra. We also study the adjoining of an order unit to a (matricially) order smooth \u221e-normed space. As a consequence, we sharpen Arveson\u2019s extension theorem of completely positive maps. Another combination of these axioms yields an order theoretic characterization of the set of real numbers amongst ordered normed linear spaces.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11117-009-0029-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134502", 
        "issn": [
          "1385-1292", 
          "1572-9281"
        ], 
        "name": "Positivity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "A p-theory of ordered normed spaces", 
    "pagination": "441-458", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a55caba5dc51b294267499ec88d254e84ec8abe7565f710e044b619edfe9194a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11117-009-0029-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034713482"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11117-009-0029-0", 
      "https://app.dimensions.ai/details/publication/pub.1034713482"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64111_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11117-009-0029-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11117-009-0029-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11117-009-0029-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11117-009-0029-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11117-009-0029-0'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11117-009-0029-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndfb72048d8d144bba440b76dc2925249
4 schema:citation sg:pub.10.1007/bf02392388
5 sg:pub.10.1007/bfb0059130
6 sg:pub.10.1007/s11117-003-2778-5
7 sg:pub.10.1007/s11117-006-2065-3
8 https://doi.org/10.1006/jfan.1997.3160
9 https://doi.org/10.1006/jfan.2001.3943
10 https://doi.org/10.1016/0022-1236(77)90052-0
11 https://doi.org/10.1016/0022-1236(88)90057-2
12 schema:datePublished 2010-09
13 schema:datePublishedReg 2010-09-01
14 schema:description We propose a pair of axioms (O.p.1) and (O.p.2) for 1 ≤ p ≤ ∞ and initiate a study of a (matrix) ordered space with a (matrix) norm, in which the (matrix) norm is related to the (matrix) order. We call such a space a (matricially) order smooth p-normed space. The advantage of studying these spaces over Lp-matricially Riesz normed spaces is that every matricially order smooth ∞-normed space can be order embedded in some C*-algebra. We also study the adjoining of an order unit to a (matricially) order smooth ∞-normed space. As a consequence, we sharpen Arveson’s extension theorem of completely positive maps. Another combination of these axioms yields an order theoretic characterization of the set of real numbers amongst ordered normed linear spaces.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N0db652aa308146c6b8e6a0da8c0fa130
19 N5b70d3a2ce834c99a299e3b31516c6b2
20 sg:journal.1134502
21 schema:name A p-theory of ordered normed spaces
22 schema:pagination 441-458
23 schema:productId N1229c596afb14813b861dbf970e7cb19
24 N22f8fa468efd45038389835d87c791cf
25 Nc9235d8c840745f38530f9d8df0601a4
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034713482
27 https://doi.org/10.1007/s11117-009-0029-0
28 schema:sdDatePublished 2019-04-11T09:26
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N4bca4ba79dda4f10bac6144bceef9a48
31 schema:url http://link.springer.com/10.1007%2Fs11117-009-0029-0
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0db652aa308146c6b8e6a0da8c0fa130 schema:volumeNumber 14
36 rdf:type schema:PublicationVolume
37 N1229c596afb14813b861dbf970e7cb19 schema:name dimensions_id
38 schema:value pub.1034713482
39 rdf:type schema:PropertyValue
40 N22f8fa468efd45038389835d87c791cf schema:name doi
41 schema:value 10.1007/s11117-009-0029-0
42 rdf:type schema:PropertyValue
43 N4bca4ba79dda4f10bac6144bceef9a48 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N5b70d3a2ce834c99a299e3b31516c6b2 schema:issueNumber 3
46 rdf:type schema:PublicationIssue
47 Nc9235d8c840745f38530f9d8df0601a4 schema:name readcube_id
48 schema:value a55caba5dc51b294267499ec88d254e84ec8abe7565f710e044b619edfe9194a
49 rdf:type schema:PropertyValue
50 Ndfb72048d8d144bba440b76dc2925249 rdf:first sg:person.012442343071.40
51 rdf:rest rdf:nil
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
56 schema:name Pure Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1134502 schema:issn 1385-1292
59 1572-9281
60 schema:name Positivity
61 rdf:type schema:Periodical
62 sg:person.012442343071.40 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
63 schema:familyName Karn
64 schema:givenName Anil K.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012442343071.40
66 rdf:type schema:Person
67 sg:pub.10.1007/bf02392388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014223727
68 https://doi.org/10.1007/bf02392388
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/bfb0059130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011122270
71 https://doi.org/10.1007/bfb0059130
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/s11117-003-2778-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041736135
74 https://doi.org/10.1007/s11117-003-2778-5
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/s11117-006-2065-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039609634
77 https://doi.org/10.1007/s11117-006-2065-3
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1006/jfan.1997.3160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008671545
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1006/jfan.2001.3943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011062821
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0022-1236(77)90052-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000192820
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0022-1236(88)90057-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028151078
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
88 schema:name Department of Mathematics, Deen Dayal Upadhyaya College, University of Delhi, Karam Pura, 110 015, New Delhi, India
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...