Operators Represented by Conditional Expectations and Random Measures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-09

AUTHORS

J. J. Grobler, D. T. Rambane

ABSTRACT

On standard measure spaces every order continuous linear map between two ideals of almost everywhere finite measurable functions can be represented by a random measure. An analogue of this theorem is proved for the case of arbitrary σ-finite measure spaces. This fact leads to a proof that every order continuous linear map between ideals of almost everywhere finite measurable functions on σ-finite measure spaces is multiplication conditional expectation representable. This sheds further light on the structure of order continuous operators. More... »

PAGES

369-383

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11117-005-4399-7

DOI

http://dx.doi.org/10.1007/s11117-005-4399-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038254398


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Unit for Business Mathematics and Informatics, North-West University, 2520, Potchefstroom, South Africa", 
          "id": "http://www.grid.ac/institutes/grid.25881.36", 
          "name": [
            "Unit for Business Mathematics and Informatics, North-West University, 2520, Potchefstroom, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grobler", 
        "givenName": "J. J.", 
        "id": "sg:person.014326465431.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326465431.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Applied Mathematics, University of Venda, Private Bag X5050, 0950, Thohoyandou, South Africa", 
          "id": "http://www.grid.ac/institutes/grid.412964.c", 
          "name": [
            "Department of Mathematics and Applied Mathematics, University of Venda, Private Bag X5050, 0950, Thohoyandou, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rambane", 
        "givenName": "D. T.", 
        "id": "sg:person.014774165143.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014774165143.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-76724-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047989176", 
          "https://doi.org/10.1007/978-3-642-76724-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65970-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040152523", 
          "https://doi.org/10.1007/978-3-642-65970-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-60637-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051153553", 
          "https://doi.org/10.1007/978-3-642-60637-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-09", 
    "datePublishedReg": "2005-09-01", 
    "description": "On standard measure spaces every order continuous linear map between two ideals of almost everywhere finite measurable functions can be represented by a random measure. An analogue of this theorem is proved for the case of arbitrary \u03c3-finite measure spaces. This fact leads to a proof that every order continuous linear map between ideals of almost everywhere finite measurable functions on \u03c3-finite measure spaces is multiplication conditional expectation representable. This sheds further light on the structure of order continuous operators.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11117-005-4399-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134502", 
        "issn": [
          "1385-1292", 
          "1572-9281"
        ], 
        "name": "Positivity", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "continuous linear map", 
      "finite measure space", 
      "measure space", 
      "random measures", 
      "linear maps", 
      "measurable functions", 
      "standard measure space", 
      "continuous operators", 
      "conditional expectation", 
      "operators", 
      "space", 
      "theorem", 
      "representable", 
      "ideal", 
      "proof", 
      "function", 
      "maps", 
      "measures", 
      "fact", 
      "cases", 
      "structure", 
      "analogues", 
      "expectations", 
      "light", 
      "order continuous linear map", 
      "finite measurable functions", 
      "multiplication conditional expectation representable", 
      "conditional expectation representable", 
      "expectation representable", 
      "order continuous operators"
    ], 
    "name": "Operators Represented by Conditional Expectations and Random Measures", 
    "pagination": "369-383", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038254398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11117-005-4399-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11117-005-4399-7", 
      "https://app.dimensions.ai/details/publication/pub.1038254398"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_404.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11117-005-4399-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11117-005-4399-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11117-005-4399-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11117-005-4399-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11117-005-4399-7'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      22 PREDICATES      59 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11117-005-4399-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7b14d895db714eca872a226844e63331
4 schema:citation sg:pub.10.1007/978-3-642-60637-3
5 sg:pub.10.1007/978-3-642-65970-6
6 sg:pub.10.1007/978-3-642-76724-1
7 schema:datePublished 2005-09
8 schema:datePublishedReg 2005-09-01
9 schema:description On standard measure spaces every order continuous linear map between two ideals of almost everywhere finite measurable functions can be represented by a random measure. An analogue of this theorem is proved for the case of arbitrary σ-finite measure spaces. This fact leads to a proof that every order continuous linear map between ideals of almost everywhere finite measurable functions on σ-finite measure spaces is multiplication conditional expectation representable. This sheds further light on the structure of order continuous operators.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N29cd007a5ed241f1857f8c655dbab765
14 Nb5ce995b05864eb38a0621e274e9cd85
15 sg:journal.1134502
16 schema:keywords analogues
17 cases
18 conditional expectation
19 conditional expectation representable
20 continuous linear map
21 continuous operators
22 expectation representable
23 expectations
24 fact
25 finite measurable functions
26 finite measure space
27 function
28 ideal
29 light
30 linear maps
31 maps
32 measurable functions
33 measure space
34 measures
35 multiplication conditional expectation representable
36 operators
37 order continuous linear map
38 order continuous operators
39 proof
40 random measures
41 representable
42 space
43 standard measure space
44 structure
45 theorem
46 schema:name Operators Represented by Conditional Expectations and Random Measures
47 schema:pagination 369-383
48 schema:productId N3d8c1249fd194d129483ce9e513d613e
49 N4c1cdc22bfa94f5ba6f1141f16756f33
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038254398
51 https://doi.org/10.1007/s11117-005-4399-7
52 schema:sdDatePublished 2022-01-01T18:14
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N1e474db2b78241aba072b5fd219b24dd
55 schema:url https://doi.org/10.1007/s11117-005-4399-7
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N1a5a5d08409947b28a8b7fbf2de40968 rdf:first sg:person.014774165143.63
60 rdf:rest rdf:nil
61 N1e474db2b78241aba072b5fd219b24dd schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N29cd007a5ed241f1857f8c655dbab765 schema:issueNumber 3
64 rdf:type schema:PublicationIssue
65 N3d8c1249fd194d129483ce9e513d613e schema:name dimensions_id
66 schema:value pub.1038254398
67 rdf:type schema:PropertyValue
68 N4c1cdc22bfa94f5ba6f1141f16756f33 schema:name doi
69 schema:value 10.1007/s11117-005-4399-7
70 rdf:type schema:PropertyValue
71 N7b14d895db714eca872a226844e63331 rdf:first sg:person.014326465431.95
72 rdf:rest N1a5a5d08409947b28a8b7fbf2de40968
73 Nb5ce995b05864eb38a0621e274e9cd85 schema:volumeNumber 9
74 rdf:type schema:PublicationVolume
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:journal.1134502 schema:issn 1385-1292
82 1572-9281
83 schema:name Positivity
84 schema:publisher Springer Nature
85 rdf:type schema:Periodical
86 sg:person.014326465431.95 schema:affiliation grid-institutes:grid.25881.36
87 schema:familyName Grobler
88 schema:givenName J. J.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326465431.95
90 rdf:type schema:Person
91 sg:person.014774165143.63 schema:affiliation grid-institutes:grid.412964.c
92 schema:familyName Rambane
93 schema:givenName D. T.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014774165143.63
95 rdf:type schema:Person
96 sg:pub.10.1007/978-3-642-60637-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051153553
97 https://doi.org/10.1007/978-3-642-60637-3
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-642-65970-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040152523
100 https://doi.org/10.1007/978-3-642-65970-6
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/978-3-642-76724-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047989176
103 https://doi.org/10.1007/978-3-642-76724-1
104 rdf:type schema:CreativeWork
105 grid-institutes:grid.25881.36 schema:alternateName Unit for Business Mathematics and Informatics, North-West University, 2520, Potchefstroom, South Africa
106 schema:name Unit for Business Mathematics and Informatics, North-West University, 2520, Potchefstroom, South Africa
107 rdf:type schema:Organization
108 grid-institutes:grid.412964.c schema:alternateName Department of Mathematics and Applied Mathematics, University of Venda, Private Bag X5050, 0950, Thohoyandou, South Africa
109 schema:name Department of Mathematics and Applied Mathematics, University of Venda, Private Bag X5050, 0950, Thohoyandou, South Africa
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...