Heuristic time-dependent personal scheduling problem with electric vehicles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-18

AUTHORS

Dimitrios Rizopoulos, Domokos Esztergár-Kiss

ABSTRACT

In this paper, a heuristic method which contributes to the solution of the Daily Activity Chains Optimization problem with the use of Electric Vehicles (DACO-EV) is presented. The DACO-EV is a time-dependent activity-scheduling problem of individual travelers in urban environments. The heuristic method is comprised of a genetic algorithm that considers as its parameters a set of preferences of the travelers regarding their initial activity chains as well as parameters concerning the transportation network and the urban environment. The objective of the algorithm is to calculate the traveler’s optimized activity chains within a single day as they emerge from the improved combinations of the available options for each individual traveler based on their flexibility preferences. Special emphasis is laid on the underlying speed-up techniques of the GA and the mechanisms that account for specific characteristics of EVs, such as consumption according to the EV model and international standards, charging station locations, and the types of charging plugs. From the results of this study, it is proven that the method is suitable for efficiently aiding travelers in the meaningful planning of their daily activity schedules and that the algorithm can serve as a tool for the analysis and derivation of the insights into the transportation network itself. More... »

PAGES

1-40

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11116-022-10300-0

DOI

http://dx.doi.org/10.1007/s11116-022-10300-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148785976


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/12", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Built Environment and Design", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Urban and Regional Planning", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1507", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Transportation and Freight Services", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Transport Technology and Economics, Budapest University of Technology and Economics, M\u0171egytem rkp. 3., 1111, Budapest, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.6759.d", 
          "name": [
            "Department of Transport Technology and Economics, Budapest University of Technology and Economics, M\u0171egytem rkp. 3., 1111, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rizopoulos", 
        "givenName": "Dimitrios", 
        "id": "sg:person.010077757031.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077757031.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Transport Technology and Economics, Budapest University of Technology and Economics, M\u0171egytem rkp. 3., 1111, Budapest, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.6759.d", 
          "name": [
            "Department of Transport Technology and Economics, Budapest University of Technology and Economics, M\u0171egytem rkp. 3., 1111, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eszterg\u00e1r-Kiss", 
        "givenName": "Domokos", 
        "id": "sg:person.014252235025.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252235025.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11116-004-8287-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006626310", 
          "https://doi.org/10.1007/s11116-004-8287-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-38527-8_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011079964", 
          "https://doi.org/10.1007/978-3-642-38527-8_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14715-9_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048927467", 
          "https://doi.org/10.1007/978-3-642-14715-9_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s43069-021-00101-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1145982586", 
          "https://doi.org/10.1007/s43069-021-00101-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-306-48058-1_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019340703", 
          "https://doi.org/10.1007/0-306-48058-1_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12351-013-0139-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044927610", 
          "https://doi.org/10.1007/s12351-013-0139-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11067-021-09537-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138543433", 
          "https://doi.org/10.1007/s11067-021-09537-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00011432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037069924", 
          "https://doi.org/10.1007/pl00011432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11067-013-9194-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018496815", 
          "https://doi.org/10.1007/s11067-013-9194-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-05453-3_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110977524", 
          "https://doi.org/10.1007/978-3-030-05453-3_13"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-18", 
    "datePublishedReg": "2022-06-18", 
    "description": "In this paper, a heuristic method which contributes to the solution of the Daily Activity Chains Optimization problem with the use of Electric Vehicles (DACO-EV) is presented. The DACO-EV is a time-dependent activity-scheduling problem of individual travelers in urban environments. The heuristic method is comprised of a genetic algorithm that considers as its parameters a set of preferences of the travelers regarding their initial activity chains as well as parameters concerning the transportation network and the urban environment. The objective of the algorithm is to calculate the traveler\u2019s optimized activity chains within a single day as they emerge from the improved combinations of the available options for each individual traveler based on their flexibility preferences. Special emphasis is laid on the underlying speed-up techniques of the GA and the mechanisms that account for specific characteristics of EVs, such as consumption according to the EV model and international standards, charging station locations, and the types of charging plugs. From the results of this study, it is proven that the method is suitable for efficiently aiding travelers in the meaningful planning of their daily activity schedules and that the algorithm can serve as a tool for the analysis and derivation of the insights into the transportation network itself.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11116-022-10300-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043848", 
        "issn": [
          "0049-4488", 
          "1572-9435"
        ], 
        "name": "Transportation", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "electric vehicles", 
      "improved combination", 
      "EV model", 
      "transportation network", 
      "urban environment", 
      "station locations", 
      "vehicles", 
      "heuristic method", 
      "optimization problem", 
      "genetic algorithm", 
      "parameters", 
      "gas", 
      "scheduling problem", 
      "method", 
      "speed", 
      "plug", 
      "algorithm", 
      "international standards", 
      "eV", 
      "problem", 
      "solution", 
      "activity chains", 
      "network", 
      "environment", 
      "consumption", 
      "special emphasis", 
      "technique", 
      "characteristics", 
      "specific characteristics", 
      "model", 
      "derivation", 
      "location", 
      "results", 
      "available options", 
      "combination", 
      "use", 
      "standards", 
      "tool", 
      "analysis", 
      "planning", 
      "mechanism", 
      "types", 
      "objective", 
      "set", 
      "chain", 
      "individual travelers", 
      "emphasis", 
      "schedule", 
      "study", 
      "options", 
      "activity schedules", 
      "single day", 
      "insights", 
      "days", 
      "daily activity schedules", 
      "travelers", 
      "set of preferences", 
      "preferences", 
      "flexibility preferences", 
      "paper", 
      "meaningful planning"
    ], 
    "name": "Heuristic time-dependent personal scheduling problem with electric vehicles", 
    "pagination": "1-40", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148785976"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11116-022-10300-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11116-022-10300-0", 
      "https://app.dimensions.ai/details/publication/pub.1148785976"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_924.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11116-022-10300-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11116-022-10300-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11116-022-10300-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11116-022-10300-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11116-022-10300-0'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      97 URIs      75 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11116-022-10300-0 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 anzsrc-for:12
4 anzsrc-for:1205
5 anzsrc-for:15
6 anzsrc-for:1507
7 schema:author N818ed64395cf4efc91e3c1e6e2d38a6f
8 schema:citation sg:pub.10.1007/0-306-48058-1_3
9 sg:pub.10.1007/978-3-030-05453-3_13
10 sg:pub.10.1007/978-3-642-14715-9_3
11 sg:pub.10.1007/978-3-642-38527-8_24
12 sg:pub.10.1007/pl00011432
13 sg:pub.10.1007/s11067-013-9194-6
14 sg:pub.10.1007/s11067-021-09537-6
15 sg:pub.10.1007/s11116-004-8287-y
16 sg:pub.10.1007/s12351-013-0139-0
17 sg:pub.10.1007/s43069-021-00101-z
18 schema:datePublished 2022-06-18
19 schema:datePublishedReg 2022-06-18
20 schema:description In this paper, a heuristic method which contributes to the solution of the Daily Activity Chains Optimization problem with the use of Electric Vehicles (DACO-EV) is presented. The DACO-EV is a time-dependent activity-scheduling problem of individual travelers in urban environments. The heuristic method is comprised of a genetic algorithm that considers as its parameters a set of preferences of the travelers regarding their initial activity chains as well as parameters concerning the transportation network and the urban environment. The objective of the algorithm is to calculate the traveler’s optimized activity chains within a single day as they emerge from the improved combinations of the available options for each individual traveler based on their flexibility preferences. Special emphasis is laid on the underlying speed-up techniques of the GA and the mechanisms that account for specific characteristics of EVs, such as consumption according to the EV model and international standards, charging station locations, and the types of charging plugs. From the results of this study, it is proven that the method is suitable for efficiently aiding travelers in the meaningful planning of their daily activity schedules and that the algorithm can serve as a tool for the analysis and derivation of the insights into the transportation network itself.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf sg:journal.1043848
24 schema:keywords EV model
25 activity chains
26 activity schedules
27 algorithm
28 analysis
29 available options
30 chain
31 characteristics
32 combination
33 consumption
34 daily activity schedules
35 days
36 derivation
37 eV
38 electric vehicles
39 emphasis
40 environment
41 flexibility preferences
42 gas
43 genetic algorithm
44 heuristic method
45 improved combination
46 individual travelers
47 insights
48 international standards
49 location
50 meaningful planning
51 mechanism
52 method
53 model
54 network
55 objective
56 optimization problem
57 options
58 paper
59 parameters
60 planning
61 plug
62 preferences
63 problem
64 results
65 schedule
66 scheduling problem
67 set
68 set of preferences
69 single day
70 solution
71 special emphasis
72 specific characteristics
73 speed
74 standards
75 station locations
76 study
77 technique
78 tool
79 transportation network
80 travelers
81 types
82 urban environment
83 use
84 vehicles
85 schema:name Heuristic time-dependent personal scheduling problem with electric vehicles
86 schema:pagination 1-40
87 schema:productId Nd3f98ce7149247809be717593fd6c5d3
88 Ndc0035dbcc394d299e4bed193eea2052
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148785976
90 https://doi.org/10.1007/s11116-022-10300-0
91 schema:sdDatePublished 2022-10-01T06:49
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N7b646b6355fb46998543e67d7e7f936a
94 schema:url https://doi.org/10.1007/s11116-022-10300-0
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N7b646b6355fb46998543e67d7e7f936a schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N818ed64395cf4efc91e3c1e6e2d38a6f rdf:first sg:person.010077757031.43
101 rdf:rest Nc91872e67e1c4a0cbe1c0a5f1264939f
102 Nc91872e67e1c4a0cbe1c0a5f1264939f rdf:first sg:person.014252235025.36
103 rdf:rest rdf:nil
104 Nd3f98ce7149247809be717593fd6c5d3 schema:name doi
105 schema:value 10.1007/s11116-022-10300-0
106 rdf:type schema:PropertyValue
107 Ndc0035dbcc394d299e4bed193eea2052 schema:name dimensions_id
108 schema:value pub.1148785976
109 rdf:type schema:PropertyValue
110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
111 schema:name Engineering
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
114 schema:name Civil Engineering
115 rdf:type schema:DefinedTerm
116 anzsrc-for:12 schema:inDefinedTermSet anzsrc-for:
117 schema:name Built Environment and Design
118 rdf:type schema:DefinedTerm
119 anzsrc-for:1205 schema:inDefinedTermSet anzsrc-for:
120 schema:name Urban and Regional Planning
121 rdf:type schema:DefinedTerm
122 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
123 schema:name Commerce, Management, Tourism and Services
124 rdf:type schema:DefinedTerm
125 anzsrc-for:1507 schema:inDefinedTermSet anzsrc-for:
126 schema:name Transportation and Freight Services
127 rdf:type schema:DefinedTerm
128 sg:journal.1043848 schema:issn 0049-4488
129 1572-9435
130 schema:name Transportation
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.010077757031.43 schema:affiliation grid-institutes:grid.6759.d
134 schema:familyName Rizopoulos
135 schema:givenName Dimitrios
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077757031.43
137 rdf:type schema:Person
138 sg:person.014252235025.36 schema:affiliation grid-institutes:grid.6759.d
139 schema:familyName Esztergár-Kiss
140 schema:givenName Domokos
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252235025.36
142 rdf:type schema:Person
143 sg:pub.10.1007/0-306-48058-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019340703
144 https://doi.org/10.1007/0-306-48058-1_3
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/978-3-030-05453-3_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110977524
147 https://doi.org/10.1007/978-3-030-05453-3_13
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/978-3-642-14715-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048927467
150 https://doi.org/10.1007/978-3-642-14715-9_3
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/978-3-642-38527-8_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011079964
153 https://doi.org/10.1007/978-3-642-38527-8_24
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/pl00011432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037069924
156 https://doi.org/10.1007/pl00011432
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s11067-013-9194-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018496815
159 https://doi.org/10.1007/s11067-013-9194-6
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11067-021-09537-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138543433
162 https://doi.org/10.1007/s11067-021-09537-6
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11116-004-8287-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006626310
165 https://doi.org/10.1007/s11116-004-8287-y
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s12351-013-0139-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044927610
168 https://doi.org/10.1007/s12351-013-0139-0
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s43069-021-00101-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1145982586
171 https://doi.org/10.1007/s43069-021-00101-z
172 rdf:type schema:CreativeWork
173 grid-institutes:grid.6759.d schema:alternateName Department of Transport Technology and Economics, Budapest University of Technology and Economics, Műegytem rkp. 3., 1111, Budapest, Hungary
174 schema:name Department of Transport Technology and Economics, Budapest University of Technology and Economics, Műegytem rkp. 3., 1111, Budapest, Hungary
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...