Commodity flow estimation for a metropolitan scale freight modeling system: supplier selection considering distribution channel using an error component logit ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-25

AUTHORS

Takanori Sakai, B. K. Bhavathrathan, André Alho, Tetsuro Hyodo, Moshe Ben-Akiva

ABSTRACT

Freight forecasting models have been significantly improved in recent years, especially in the field of goods vehicle behavior modeling. On the other hand, the improvements to commodity flow modeling, which provide inputs for goods vehicle simulations, were limited. Contributing to this component in urban freight modeling systems, we propose an error component logit mixture model for matching a receiver to a supplier that considers two-layers in supplier selection: distribution channels and specific suppliers. The distribution channel is an important element in freight modeling, as the type of distribution channel is relevant to various aspects of shipments and vehicle trips. The model is estimated using the data from the Tokyo Metropolitan Freight Survey. We demonstrate how typical establishment survey data (i.e. establishment and outbound shipment records) can be used to develop the model. The model captures the correlation structure of potential suppliers defined by business function and provides insights on the differences in the supplier choice by distribution channel. The reproducibility tests confirm the validity of the proposed approach, which is currently integrated into a metropolitan-scale agent-based freight modeling system, for practical use. More... »

PAGES

1-29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11116-018-9932-1

DOI

http://dx.doi.org/10.1007/s11116-018-9932-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107849133


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Singapore-MIT Alliance for Research and Technology", 
          "id": "https://www.grid.ac/institutes/grid.429485.6", 
          "name": [
            "Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 09-02, CREATE Tower, 138602, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakai", 
        "givenName": "Takanori", 
        "id": "sg:person.012240751407.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012240751407.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore-MIT Alliance for Research and Technology", 
          "id": "https://www.grid.ac/institutes/grid.429485.6", 
          "name": [
            "Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 09-02, CREATE Tower, 138602, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhavathrathan", 
        "givenName": "B. K.", 
        "id": "sg:person.07676673447.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676673447.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore-MIT Alliance for Research and Technology", 
          "id": "https://www.grid.ac/institutes/grid.429485.6", 
          "name": [
            "Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 09-02, CREATE Tower, 138602, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alho", 
        "givenName": "Andr\u00e9", 
        "id": "sg:person.012507516531.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012507516531.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Marine Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412785.d", 
          "name": [
            "Department of Logistics and Information Engineering, Tokyo University of Marine Science and Technology, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hyodo", 
        "givenName": "Tetsuro", 
        "id": "sg:person.013633712407.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013633712407.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Intelligent Transportation Systems Lab, Massachusetts Institute of Technology, Cambridge, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ben-Akiva", 
        "givenName": "Moshe", 
        "id": "sg:person.011411052675.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411052675.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.trpro.2016.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000377115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081060.2016.1204091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011344379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2015.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013215732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2007.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014087939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12544-015-0163-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020237874", 
          "https://doi.org/10.1007/s12544-015-0163-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2008.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020899057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11116-012-9422-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025989687", 
          "https://doi.org/10.1007/s11116-012-9422-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tra.2011.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031027457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jae.971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032437689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbspro.2010.04.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032551930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/9781781902868-004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033904329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtrangeo.2015.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038846884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-3995.1998.tb00128.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040550985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2009.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041228112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2013.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045524420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2013.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047814977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11116-010-9281-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050631477", 
          "https://doi.org/10.1007/s11116-010-9281-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11116-010-9281-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050631477", 
          "https://doi.org/10.1007/s11116-010-9281-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12544-015-0181-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051808725", 
          "https://doi.org/10.1007/s12544-015-0181-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12544-015-0181-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051808725", 
          "https://doi.org/10.1007/s12544-015-0181-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/1725-03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071038894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/1725-03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071038894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/1725-03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071038894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/2379-02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071049371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/2379-02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071049371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/2609-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090964394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/2609-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090964394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2017.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100157315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trpro.2017.12.138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100164792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11116-018-9856-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100471847", 
          "https://doi.org/10.1007/s11116-018-9856-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0361198105190600113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104193497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0361198105190600113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104193497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0361198106195700111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104194287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0361198106195700111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104194287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0361198106196600106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104194433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0361198106196600106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104194433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781119425526.ch7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104344920"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-25", 
    "datePublishedReg": "2018-10-25", 
    "description": "Freight forecasting models have been significantly improved in recent years, especially in the field of goods vehicle behavior modeling. On the other hand, the improvements to commodity flow modeling, which provide inputs for goods vehicle simulations, were limited. Contributing to this component in urban freight modeling systems, we propose an error component logit mixture model for matching a receiver to a supplier that considers two-layers in supplier selection: distribution channels and specific suppliers. The distribution channel is an important element in freight modeling, as the type of distribution channel is relevant to various aspects of shipments and vehicle trips. The model is estimated using the data from the Tokyo Metropolitan Freight Survey. We demonstrate how typical establishment survey data (i.e. establishment and outbound shipment records) can be used to develop the model. The model captures the correlation structure of potential suppliers defined by business function and provides insights on the differences in the supplier choice by distribution channel. The reproducibility tests confirm the validity of the proposed approach, which is currently integrated into a metropolitan-scale agent-based freight modeling system, for practical use.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11116-018-9932-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043848", 
        "issn": [
          "0049-4488", 
          "1572-9435"
        ], 
        "name": "Transportation", 
        "type": "Periodical"
      }
    ], 
    "name": "Commodity flow estimation for a metropolitan scale freight modeling system: supplier selection considering distribution channel using an error component logit mixture model", 
    "pagination": "1-29", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d03d354ec3bb754c7def6b10f6376fc83860cc77c3db54356c5ef3095ffbfee7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11116-018-9932-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107849133"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11116-018-9932-1", 
      "https://app.dimensions.ai/details/publication/pub.1107849133"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11116-018-9932-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11116-018-9932-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11116-018-9932-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11116-018-9932-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11116-018-9932-1'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      52 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11116-018-9932-1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N63af6a562a0a48c39a49d07b8be10f5b
4 schema:citation sg:pub.10.1007/s11116-010-9281-1
5 sg:pub.10.1007/s11116-012-9422-9
6 sg:pub.10.1007/s11116-018-9856-9
7 sg:pub.10.1007/s12544-015-0163-7
8 sg:pub.10.1007/s12544-015-0181-5
9 https://doi.org/10.1002/9781119425526.ch7
10 https://doi.org/10.1002/jae.971
11 https://doi.org/10.1016/j.jtrangeo.2015.05.003
12 https://doi.org/10.1016/j.sbspro.2010.04.021
13 https://doi.org/10.1016/j.tra.2011.11.004
14 https://doi.org/10.1016/j.trb.2007.04.009
15 https://doi.org/10.1016/j.trb.2013.08.011
16 https://doi.org/10.1016/j.tre.2008.07.002
17 https://doi.org/10.1016/j.tre.2009.06.002
18 https://doi.org/10.1016/j.tre.2013.12.014
19 https://doi.org/10.1016/j.tre.2015.04.001
20 https://doi.org/10.1016/j.tre.2017.12.011
21 https://doi.org/10.1016/j.trpro.2016.02.012
22 https://doi.org/10.1016/j.trpro.2017.12.138
23 https://doi.org/10.1080/03081060.2016.1204091
24 https://doi.org/10.1108/9781781902868-004
25 https://doi.org/10.1111/j.1475-3995.1998.tb00128.x
26 https://doi.org/10.1177/0361198105190600113
27 https://doi.org/10.1177/0361198106195700111
28 https://doi.org/10.1177/0361198106196600106
29 https://doi.org/10.3141/1725-03
30 https://doi.org/10.3141/2379-02
31 https://doi.org/10.3141/2609-07
32 schema:datePublished 2018-10-25
33 schema:datePublishedReg 2018-10-25
34 schema:description Freight forecasting models have been significantly improved in recent years, especially in the field of goods vehicle behavior modeling. On the other hand, the improvements to commodity flow modeling, which provide inputs for goods vehicle simulations, were limited. Contributing to this component in urban freight modeling systems, we propose an error component logit mixture model for matching a receiver to a supplier that considers two-layers in supplier selection: distribution channels and specific suppliers. The distribution channel is an important element in freight modeling, as the type of distribution channel is relevant to various aspects of shipments and vehicle trips. The model is estimated using the data from the Tokyo Metropolitan Freight Survey. We demonstrate how typical establishment survey data (i.e. establishment and outbound shipment records) can be used to develop the model. The model captures the correlation structure of potential suppliers defined by business function and provides insights on the differences in the supplier choice by distribution channel. The reproducibility tests confirm the validity of the proposed approach, which is currently integrated into a metropolitan-scale agent-based freight modeling system, for practical use.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf sg:journal.1043848
39 schema:name Commodity flow estimation for a metropolitan scale freight modeling system: supplier selection considering distribution channel using an error component logit mixture model
40 schema:pagination 1-29
41 schema:productId N06e2174cb7bb4ff5b4489a97e1c38cb9
42 N70433af07a9a4ceb85295de1bb117c4c
43 Ncee6a5be65994629ac29d9433e8e2a31
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107849133
45 https://doi.org/10.1007/s11116-018-9932-1
46 schema:sdDatePublished 2019-04-10T17:40
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N02d6f582167f42978bc99f395d226992
49 schema:url https://link.springer.com/10.1007%2Fs11116-018-9932-1
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N02d6f582167f42978bc99f395d226992 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N06e2174cb7bb4ff5b4489a97e1c38cb9 schema:name dimensions_id
56 schema:value pub.1107849133
57 rdf:type schema:PropertyValue
58 N2937315a387b481d8d361877f6bc42b4 rdf:first sg:person.011411052675.87
59 rdf:rest rdf:nil
60 N63af6a562a0a48c39a49d07b8be10f5b rdf:first sg:person.012240751407.12
61 rdf:rest N9d79cd39d17e4164a762ff539fb5d2b3
62 N70433af07a9a4ceb85295de1bb117c4c schema:name readcube_id
63 schema:value d03d354ec3bb754c7def6b10f6376fc83860cc77c3db54356c5ef3095ffbfee7
64 rdf:type schema:PropertyValue
65 N8f08f433c35b448aa241cef564ce5521 rdf:first sg:person.013633712407.30
66 rdf:rest N2937315a387b481d8d361877f6bc42b4
67 N9d79cd39d17e4164a762ff539fb5d2b3 rdf:first sg:person.07676673447.23
68 rdf:rest Ne9b1131631774d379c23cd27531c4095
69 Ncee6a5be65994629ac29d9433e8e2a31 schema:name doi
70 schema:value 10.1007/s11116-018-9932-1
71 rdf:type schema:PropertyValue
72 Ne9b1131631774d379c23cd27531c4095 rdf:first sg:person.012507516531.42
73 rdf:rest N8f08f433c35b448aa241cef564ce5521
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
78 schema:name Statistics
79 rdf:type schema:DefinedTerm
80 sg:journal.1043848 schema:issn 0049-4488
81 1572-9435
82 schema:name Transportation
83 rdf:type schema:Periodical
84 sg:person.011411052675.87 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
85 schema:familyName Ben-Akiva
86 schema:givenName Moshe
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411052675.87
88 rdf:type schema:Person
89 sg:person.012240751407.12 schema:affiliation https://www.grid.ac/institutes/grid.429485.6
90 schema:familyName Sakai
91 schema:givenName Takanori
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012240751407.12
93 rdf:type schema:Person
94 sg:person.012507516531.42 schema:affiliation https://www.grid.ac/institutes/grid.429485.6
95 schema:familyName Alho
96 schema:givenName André
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012507516531.42
98 rdf:type schema:Person
99 sg:person.013633712407.30 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
100 schema:familyName Hyodo
101 schema:givenName Tetsuro
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013633712407.30
103 rdf:type schema:Person
104 sg:person.07676673447.23 schema:affiliation https://www.grid.ac/institutes/grid.429485.6
105 schema:familyName Bhavathrathan
106 schema:givenName B. K.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676673447.23
108 rdf:type schema:Person
109 sg:pub.10.1007/s11116-010-9281-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050631477
110 https://doi.org/10.1007/s11116-010-9281-1
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11116-012-9422-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025989687
113 https://doi.org/10.1007/s11116-012-9422-9
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11116-018-9856-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100471847
116 https://doi.org/10.1007/s11116-018-9856-9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s12544-015-0163-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020237874
119 https://doi.org/10.1007/s12544-015-0163-7
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s12544-015-0181-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051808725
122 https://doi.org/10.1007/s12544-015-0181-5
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/9781119425526.ch7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104344920
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/jae.971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032437689
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jtrangeo.2015.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038846884
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.sbspro.2010.04.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032551930
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.tra.2011.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031027457
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.trb.2007.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014087939
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.trb.2013.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047814977
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.tre.2008.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020899057
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.tre.2009.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041228112
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.tre.2013.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045524420
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.tre.2015.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013215732
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.tre.2017.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100157315
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.trpro.2016.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000377115
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.trpro.2017.12.138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100164792
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/03081060.2016.1204091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011344379
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1108/9781781902868-004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033904329
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1111/j.1475-3995.1998.tb00128.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040550985
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1177/0361198105190600113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104193497
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1177/0361198106195700111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104194287
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1177/0361198106196600106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104194433
163 rdf:type schema:CreativeWork
164 https://doi.org/10.3141/1725-03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071038894
165 rdf:type schema:CreativeWork
166 https://doi.org/10.3141/2379-02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071049371
167 rdf:type schema:CreativeWork
168 https://doi.org/10.3141/2609-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090964394
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
171 schema:name Intelligent Transportation Systems Lab, Massachusetts Institute of Technology, Cambridge, USA
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.412785.d schema:alternateName Tokyo University of Marine Science and Technology
174 schema:name Department of Logistics and Information Engineering, Tokyo University of Marine Science and Technology, Tokyo, Japan
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.429485.6 schema:alternateName Singapore-MIT Alliance for Research and Technology
177 schema:name Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 09-02, CREATE Tower, 138602, Singapore, Singapore
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...