Heat and adult health in China View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04-14

AUTHORS

Valerie Mueller, Clark Gray

ABSTRACT

Given projected increases in the frequency of precipitation and temperature extremes in China, we examine the extent adults may be vulnerable to climate anomalies. We link nutrition, health, and economic data from the China Health and Nutrition Survey (1989–2011) to gridded climate data to identify which socioeconomic outcomes are particularly susceptible, including adult underweight incidence, body mass index, dietary intake, physical activity, illness, income, and food prices. We find warm temperatures augment the probability of being underweight among adults, with a particularly large impact for the elderly (ages > 60). Extremely dry and warm conditions produce a 3.3-percentage point increase in underweight status for this group. Consequences on nutrition coincide with changes in illness rather than dietary, income, or purchasing power shifts. Social protection targeting areas prone to excessive heat may consider supplementing bundles of goods with a suite of health care provisions catering to the elderly. More... »

PAGES

1-26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11111-018-0294-6

DOI

http://dx.doi.org/10.1007/s11111-018-0294-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103247828

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30349149


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Studies in Human Society", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Development Strategy and Governance Division, International Food Policy Research Institute, Washington, DC, USA", 
          "id": "http://www.grid.ac/institutes/grid.419346.d", 
          "name": [
            "School of Politics and Global Studies, Arizona State University, Coor Hall, Room 6778, PO Box 873902, 85287, Tempe, AZ, USA", 
            "Development Strategy and Governance Division, International Food Policy Research Institute, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mueller", 
        "givenName": "Valerie", 
        "id": "sg:person.01272617266.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272617266.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geography, University of North Carolina, Chapel Hill, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Department of Geography, University of North Carolina, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gray", 
        "givenName": "Clark", 
        "id": "sg:person.0600567071.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600567071.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nclimate2704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011859276", 
          "https://doi.org/10.1038/nclimate2704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027208376", 
          "https://doi.org/10.1038/nature04188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030001801", 
          "https://doi.org/10.1038/nclimate1356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-008-9441-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009735448", 
          "https://doi.org/10.1007/s10584-008-9441-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2953-9_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028630865", 
          "https://doi.org/10.1007/978-90-481-2953-9_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025050041", 
          "https://doi.org/10.1038/nature09364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027882263", 
          "https://doi.org/10.1038/nature15725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10640-009-9270-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001114108", 
          "https://doi.org/10.1007/s10640-009-9270-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-14", 
    "datePublishedReg": "2018-04-14", 
    "description": "Given projected increases in the frequency of precipitation and temperature extremes in China, we examine the extent adults may be vulnerable to climate anomalies. We link nutrition, health, and economic data from the China Health and Nutrition Survey (1989\u20132011) to gridded climate data to identify which socioeconomic outcomes are particularly susceptible, including adult underweight incidence, body mass index, dietary intake, physical activity, illness, income, and food prices. We find warm temperatures augment the probability of being underweight among adults, with a particularly large impact for the elderly (ages >\u200960). Extremely dry and warm conditions produce a 3.3-percentage point increase in underweight status for this group. Consequences on nutrition coincide with changes in illness rather than dietary, income, or purchasing power shifts. Social protection targeting areas prone to excessive heat may consider supplementing bundles of goods with a suite of health care provisions catering to the elderly.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11111-018-0294-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4729624", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4455762", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1091418", 
        "issn": [
          "0199-0039", 
          "1573-7810"
        ], 
        "name": "Population and Environment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "body mass index", 
      "mass index", 
      "dietary intake", 
      "underweight status", 
      "health care provision", 
      "physical activity", 
      "Nutrition Survey", 
      "adult health", 
      "care provision", 
      "China Health", 
      "extent adults", 
      "illness", 
      "health", 
      "adults", 
      "socioeconomic outcomes", 
      "incidence", 
      "point increase", 
      "intake", 
      "outcomes", 
      "nutrition", 
      "increase", 
      "status", 
      "group", 
      "index", 
      "data", 
      "economic data", 
      "activity", 
      "protection", 
      "survey", 
      "changes", 
      "income", 
      "anomalies", 
      "bundles", 
      "frequency", 
      "excessive heat", 
      "projected increases", 
      "provision", 
      "consequences", 
      "impact", 
      "area", 
      "conditions", 
      "large impact", 
      "food prices", 
      "probability", 
      "China", 
      "shift", 
      "extremes", 
      "social protection", 
      "warmer temperatures", 
      "coincide", 
      "heat", 
      "warm conditions", 
      "temperature extremes", 
      "suite", 
      "power shifts", 
      "goods", 
      "precipitation", 
      "temperature", 
      "prices", 
      "bundle of goods", 
      "frequency of precipitation", 
      "climate data", 
      "climate anomalies", 
      "adult underweight incidence", 
      "underweight incidence", 
      "nutrition coincide"
    ], 
    "name": "Heat and adult health in China", 
    "pagination": "1-26", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103247828"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11111-018-0294-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30349149"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11111-018-0294-6", 
      "https://app.dimensions.ai/details/publication/pub.1103247828"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_769.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11111-018-0294-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11111-018-0294-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11111-018-0294-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11111-018-0294-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11111-018-0294-6'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      22 PREDICATES      101 URIs      84 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11111-018-0294-6 schema:about anzsrc-for:05
2 anzsrc-for:14
3 anzsrc-for:16
4 schema:author Ne4955f1e2ccc4c19aca7803ff0a6ca8c
5 schema:citation sg:pub.10.1007/978-90-481-2953-9_2
6 sg:pub.10.1007/s10584-008-9441-x
7 sg:pub.10.1007/s10640-009-9270-z
8 sg:pub.10.1038/nature04188
9 sg:pub.10.1038/nature09364
10 sg:pub.10.1038/nature15725
11 sg:pub.10.1038/nclimate1356
12 sg:pub.10.1038/nclimate2704
13 schema:datePublished 2018-04-14
14 schema:datePublishedReg 2018-04-14
15 schema:description Given projected increases in the frequency of precipitation and temperature extremes in China, we examine the extent adults may be vulnerable to climate anomalies. We link nutrition, health, and economic data from the China Health and Nutrition Survey (1989–2011) to gridded climate data to identify which socioeconomic outcomes are particularly susceptible, including adult underweight incidence, body mass index, dietary intake, physical activity, illness, income, and food prices. We find warm temperatures augment the probability of being underweight among adults, with a particularly large impact for the elderly (ages > 60). Extremely dry and warm conditions produce a 3.3-percentage point increase in underweight status for this group. Consequences on nutrition coincide with changes in illness rather than dietary, income, or purchasing power shifts. Social protection targeting areas prone to excessive heat may consider supplementing bundles of goods with a suite of health care provisions catering to the elderly.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N04b2c0072cb24387a29bf7714fab1abe
20 N09f333e8b2ee4063b4c253608cab6985
21 sg:journal.1091418
22 schema:keywords China
23 China Health
24 Nutrition Survey
25 activity
26 adult health
27 adult underweight incidence
28 adults
29 anomalies
30 area
31 body mass index
32 bundle of goods
33 bundles
34 care provision
35 changes
36 climate anomalies
37 climate data
38 coincide
39 conditions
40 consequences
41 data
42 dietary intake
43 economic data
44 excessive heat
45 extent adults
46 extremes
47 food prices
48 frequency
49 frequency of precipitation
50 goods
51 group
52 health
53 health care provision
54 heat
55 illness
56 impact
57 incidence
58 income
59 increase
60 index
61 intake
62 large impact
63 mass index
64 nutrition
65 nutrition coincide
66 outcomes
67 physical activity
68 point increase
69 power shifts
70 precipitation
71 prices
72 probability
73 projected increases
74 protection
75 provision
76 shift
77 social protection
78 socioeconomic outcomes
79 status
80 suite
81 survey
82 temperature
83 temperature extremes
84 underweight incidence
85 underweight status
86 warm conditions
87 warmer temperatures
88 schema:name Heat and adult health in China
89 schema:pagination 1-26
90 schema:productId N7df06442dc45428cbbf8c7da30313abc
91 N979046cb822c40e58e8a79402b99ff38
92 Nb301c603b34d4c079756bd3409ac3a54
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103247828
94 https://doi.org/10.1007/s11111-018-0294-6
95 schema:sdDatePublished 2021-12-01T19:40
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher Ndc8e1485f9ee475b8eb1b0e59a0e8a50
98 schema:url https://doi.org/10.1007/s11111-018-0294-6
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N04b2c0072cb24387a29bf7714fab1abe schema:volumeNumber 40
103 rdf:type schema:PublicationVolume
104 N09f333e8b2ee4063b4c253608cab6985 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N316a58759bf9441e877ccdc488a6027d rdf:first sg:person.0600567071.67
107 rdf:rest rdf:nil
108 N7df06442dc45428cbbf8c7da30313abc schema:name dimensions_id
109 schema:value pub.1103247828
110 rdf:type schema:PropertyValue
111 N979046cb822c40e58e8a79402b99ff38 schema:name pubmed_id
112 schema:value 30349149
113 rdf:type schema:PropertyValue
114 Nb301c603b34d4c079756bd3409ac3a54 schema:name doi
115 schema:value 10.1007/s11111-018-0294-6
116 rdf:type schema:PropertyValue
117 Ndc8e1485f9ee475b8eb1b0e59a0e8a50 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Ne4955f1e2ccc4c19aca7803ff0a6ca8c rdf:first sg:person.01272617266.52
120 rdf:rest N316a58759bf9441e877ccdc488a6027d
121 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
122 schema:name Environmental Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
125 schema:name Economics
126 rdf:type schema:DefinedTerm
127 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
128 schema:name Studies in Human Society
129 rdf:type schema:DefinedTerm
130 sg:grant.4455762 http://pending.schema.org/fundedItem sg:pub.10.1007/s11111-018-0294-6
131 rdf:type schema:MonetaryGrant
132 sg:grant.4729624 http://pending.schema.org/fundedItem sg:pub.10.1007/s11111-018-0294-6
133 rdf:type schema:MonetaryGrant
134 sg:journal.1091418 schema:issn 0199-0039
135 1573-7810
136 schema:name Population and Environment
137 schema:publisher Springer Nature
138 rdf:type schema:Periodical
139 sg:person.01272617266.52 schema:affiliation grid-institutes:grid.419346.d
140 schema:familyName Mueller
141 schema:givenName Valerie
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272617266.52
143 rdf:type schema:Person
144 sg:person.0600567071.67 schema:affiliation grid-institutes:grid.10698.36
145 schema:familyName Gray
146 schema:givenName Clark
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600567071.67
148 rdf:type schema:Person
149 sg:pub.10.1007/978-90-481-2953-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028630865
150 https://doi.org/10.1007/978-90-481-2953-9_2
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10584-008-9441-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009735448
153 https://doi.org/10.1007/s10584-008-9441-x
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s10640-009-9270-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001114108
156 https://doi.org/10.1007/s10640-009-9270-z
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nature04188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027208376
159 https://doi.org/10.1038/nature04188
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature09364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025050041
162 https://doi.org/10.1038/nature09364
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nature15725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027882263
165 https://doi.org/10.1038/nature15725
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nclimate1356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001801
168 https://doi.org/10.1038/nclimate1356
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nclimate2704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011859276
171 https://doi.org/10.1038/nclimate2704
172 rdf:type schema:CreativeWork
173 grid-institutes:grid.10698.36 schema:alternateName Department of Geography, University of North Carolina, Chapel Hill, NC, USA
174 schema:name Department of Geography, University of North Carolina, Chapel Hill, NC, USA
175 rdf:type schema:Organization
176 grid-institutes:grid.419346.d schema:alternateName Development Strategy and Governance Division, International Food Policy Research Institute, Washington, DC, USA
177 schema:name Development Strategy and Governance Division, International Food Policy Research Institute, Washington, DC, USA
178 School of Politics and Global Studies, Arizona State University, Coor Hall, Room 6778, PO Box 873902, 85287, Tempe, AZ, USA
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...