Reconstruction of the surface temperature fields according to the fragmentary data of remote sensing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09

AUTHORS

E. F. Vasechkina

ABSTRACT

We propose a gap-filling method for the data of remote sensing of the hydrophysical and biological characteristics of the water surface. The proposed method of reconstruction is based on the representation of the fields of surface characteristics as the sums of certain numbers of empirical orthogonal functions (EOF) making the largest contributions to the total variance of the field. According to the fragmentary data obtained as a result of processing of the satellite images for the summer season, we construct estimates of the mean field and of the four-dimensional space covariance function of the surface temperature of the Black Sea. The coefficients of expansion are computed by the method of least squares or determined with the help of a genetic searching algorithm. The results of numerical experiments show that the proposed method is quite promising for applications in the problems of gap filling in the available satellite data. More... »

PAGES

195-210

References to SciGraph publications

Journal

TITLE

Physical Oceanography

ISSUE

3

VOLUME

21

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11110-011-9115-5

DOI

http://dx.doi.org/10.1007/s11110-011-9115-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010283862


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Marine Hydrophysical Institute", 
          "id": "https://www.grid.ac/institutes/grid.425443.0", 
          "name": [
            "Marine Hydrophysical Institute, Ukrainian National Academy of Sciences, Sevastopol, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasechkina", 
        "givenName": "E. F.", 
        "id": "sg:person.010513610713.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010513610713.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0485(1997)027<0468:aeeaos>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015396839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020152126998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033969948", 
          "https://doi.org/10.1023/a:1020152126998"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09", 
    "datePublishedReg": "2011-09-01", 
    "description": "We propose a gap-filling method for the data of remote sensing of the hydrophysical and biological characteristics of the water surface. The proposed method of reconstruction is based on the representation of the fields of surface characteristics as the sums of certain numbers of empirical orthogonal functions (EOF) making the largest contributions to the total variance of the field. According to the fragmentary data obtained as a result of processing of the satellite images for the summer season, we construct estimates of the mean field and of the four-dimensional space covariance function of the surface temperature of the Black Sea. The coefficients of expansion are computed by the method of least squares or determined with the help of a genetic searching algorithm. The results of numerical experiments show that the proposed method is quite promising for applications in the problems of gap filling in the available satellite data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11110-011-9115-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313817", 
        "issn": [
          "0928-5105", 
          "1573-160X"
        ], 
        "name": "Physical Oceanography", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Reconstruction of the surface temperature fields according to the fragmentary data of remote sensing", 
    "pagination": "195-210", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "30fe7e4c965be8145688bf994d47368ab4a2971e00a6a63b85c6b0927b2f563f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11110-011-9115-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010283862"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11110-011-9115-5", 
      "https://app.dimensions.ai/details/publication/pub.1010283862"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11110-011-9115-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11110-011-9115-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11110-011-9115-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11110-011-9115-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11110-011-9115-5'


 

This table displays all metadata directly associated to this object as RDF triples.

68 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11110-011-9115-5 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N424915882e8a4bfaade8919680c1cc11
4 schema:citation sg:pub.10.1023/a:1020152126998
5 https://doi.org/10.1175/1520-0485(1997)027<0468:aeeaos>2.0.co;2
6 schema:datePublished 2011-09
7 schema:datePublishedReg 2011-09-01
8 schema:description We propose a gap-filling method for the data of remote sensing of the hydrophysical and biological characteristics of the water surface. The proposed method of reconstruction is based on the representation of the fields of surface characteristics as the sums of certain numbers of empirical orthogonal functions (EOF) making the largest contributions to the total variance of the field. According to the fragmentary data obtained as a result of processing of the satellite images for the summer season, we construct estimates of the mean field and of the four-dimensional space covariance function of the surface temperature of the Black Sea. The coefficients of expansion are computed by the method of least squares or determined with the help of a genetic searching algorithm. The results of numerical experiments show that the proposed method is quite promising for applications in the problems of gap filling in the available satellite data.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N4be2eaa5f76d479a962851051e0b542e
13 Ne6ed8694e45c494db46ba1c1ec55679b
14 sg:journal.1313817
15 schema:name Reconstruction of the surface temperature fields according to the fragmentary data of remote sensing
16 schema:pagination 195-210
17 schema:productId N30baa5d937b546c0a8165c70c5aebc07
18 N9fe30ca8b9824be8af336760c7e7cad6
19 Nf5744aefbdfe4f2e90b56730687d052c
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010283862
21 https://doi.org/10.1007/s11110-011-9115-5
22 schema:sdDatePublished 2019-04-10T21:38
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Nbe3bb51a9bc54d2bad8396fc2ecde9e1
25 schema:url http://link.springer.com/10.1007%2Fs11110-011-9115-5
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N30baa5d937b546c0a8165c70c5aebc07 schema:name doi
30 schema:value 10.1007/s11110-011-9115-5
31 rdf:type schema:PropertyValue
32 N424915882e8a4bfaade8919680c1cc11 rdf:first sg:person.010513610713.32
33 rdf:rest rdf:nil
34 N4be2eaa5f76d479a962851051e0b542e schema:volumeNumber 21
35 rdf:type schema:PublicationVolume
36 N9fe30ca8b9824be8af336760c7e7cad6 schema:name readcube_id
37 schema:value 30fe7e4c965be8145688bf994d47368ab4a2971e00a6a63b85c6b0927b2f563f
38 rdf:type schema:PropertyValue
39 Nbe3bb51a9bc54d2bad8396fc2ecde9e1 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Ne6ed8694e45c494db46ba1c1ec55679b schema:issueNumber 3
42 rdf:type schema:PublicationIssue
43 Nf5744aefbdfe4f2e90b56730687d052c schema:name dimensions_id
44 schema:value pub.1010283862
45 rdf:type schema:PropertyValue
46 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
47 schema:name Engineering
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
50 schema:name Geomatic Engineering
51 rdf:type schema:DefinedTerm
52 sg:journal.1313817 schema:issn 0928-5105
53 1573-160X
54 schema:name Physical Oceanography
55 rdf:type schema:Periodical
56 sg:person.010513610713.32 schema:affiliation https://www.grid.ac/institutes/grid.425443.0
57 schema:familyName Vasechkina
58 schema:givenName E. F.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010513610713.32
60 rdf:type schema:Person
61 sg:pub.10.1023/a:1020152126998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033969948
62 https://doi.org/10.1023/a:1020152126998
63 rdf:type schema:CreativeWork
64 https://doi.org/10.1175/1520-0485(1997)027<0468:aeeaos>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015396839
65 rdf:type schema:CreativeWork
66 https://www.grid.ac/institutes/grid.425443.0 schema:alternateName Marine Hydrophysical Institute
67 schema:name Marine Hydrophysical Institute, Ukrainian National Academy of Sciences, Sevastopol, Ukraine
68 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...