Transcriptome Profiling of Dehydration Stress in the Chinese Cabbage (Brassica rapa L. ssp. pekinensis) by Tag Sequencing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-05-05

AUTHORS

Shuancang Yu, Fenglan Zhang, Yangjun Yu, Deshuang Zhang, Xiuyun Zhao, Wenhong Wang

ABSTRACT

Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a vegetable crop with high water requirement and is adversely affected by drought during cultivation. A genome-wide transcription analysis in response to drought is essential to provide effective genetic engineering strategies to improve stress tolerance in crop plants. To gain a deeper understanding of the mechanisms of drought tolerance in B. rapa, we conducted the first genome-wide analysis of gene expression during a drought model using tag sequencing with a Solexa Illumina array. Leaf samples at four time points, 0 day, 1 day, 2 days, and 3 days after dehydration treatment, were taken from a B. rapa DH line, T12-19, and the corresponding RNA was used to construct the expression libraries. The total number of tags per library ranged from 5.6 to 7.6 million and, among these, 13,036, 12,472, 12,774, and 12,227 distinct clean tags for the four respective libraries were unambiguously mapped to a publicly available unigene database. The analysis of differentially expressed genes revealed that 1,092 genes were significantly altered in response to water deficit. In this set of genes, we found 37 transcription factors, 28 genes involved in signal transduction, and 61 water- and osmosensing-responsive genes. Overall, the tag sequencing analyses demonstrated a high degree of transcriptional complexity in response to dehydration stress and represents a considerable improvement over microarray data in the large-scale analysis of transcriptional changes. More... »

PAGES

17-28

References to SciGraph publications

  • 2009-05-28. Molecular Cloning and Characterization of a Novel Gossypium hirsutum L. bHLH Gene in Response to ABA and Drought Stresses in PLANT MOLECULAR BIOLOGY REPORTER
  • 2000-06. Searching for genetic determinants in the new millennium in NATURE
  • 2010-11-20. Gene Expression Profiles in Response to Salt Stress in Hibiscus Tiliaceus in PLANT MOLECULAR BIOLOGY REPORTER
  • 2010-07-29. Identification of Water Deficit Stress Upregulated Genes in Sugarcane in PLANT MOLECULAR BIOLOGY REPORTER
  • 2009-12-02. Genome-wide transcriptome analysis of two maize inbred lines under drought stress in PLANT MOLECULAR BIOLOGY
  • 2002-11-15. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress in THEORETICAL AND APPLIED GENETICS
  • 2005-07-31. Genome sequencing in microfabricated high-density picolitre reactors in NATURE
  • 2009-07-24. Characterization of an Oxidative Stress Inducible Nonspecific Lipid Transfer Protein Coding cDNA and its Promoter from Drought Tolerant Plant Prosopis juliflora in PLANT MOLECULAR BIOLOGY REPORTER
  • 2008-10. Genetic approaches towards overcoming water deficit in plants - special emphasis on LEAs in PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS
  • 2011-02-08. Identification of Novel and Conserved microRNAs in Rehmannia glutinosa L. by Solexa Sequencing in PLANT MOLECULAR BIOLOGY REPORTER
  • 2010-10-19. Isolation of Salt Stress Tolerance Genes from Roots of Mangrove Plant, Rhizophora stylosa Griff., Using PCR-Based Suppression Subtractive Hybridization in PLANT MOLECULAR BIOLOGY REPORTER
  • 2010-04-16. Transcriptional Profiles of Roots of Different Soybean Genotypes Subjected to Drought Stress in PLANT MOLECULAR BIOLOGY REPORTER
  • 2011-02-16. Discovery of Genes Expressed in Basal Endosperm Transfer Cells in Maize Using 454 Transcriptome Sequencing in PLANT MOLECULAR BIOLOGY REPORTER
  • 2008-11. Accurate whole human genome sequencing using reversible terminator chemistry in NATURE
  • 2003-09-26. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance in PLANTA
  • 1992-02. A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants in PLANT MOLECULAR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11105-011-0313-6

    DOI

    http://dx.doi.org/10.1007/s11105-011-0313-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044317000


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Shuancang", 
            "id": "sg:person.014275361211.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014275361211.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Fenglan", 
            "id": "sg:person.012143422247.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012143422247.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Yangjun", 
            "id": "sg:person.014333743647.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014333743647.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Deshuang", 
            "id": "sg:person.016524265247.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016524265247.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Xiuyun", 
            "id": "sg:person.011571476353.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011571476353.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Wenhong", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature03959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021574562", 
              "https://doi.org/10.1038/nature03959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925719", 
              "https://doi.org/10.1038/nature07517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-003-1105-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027618177", 
              "https://doi.org/10.1007/s00425-003-1105-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00020016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037886589", 
              "https://doi.org/10.1007/bf00020016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-009-9579-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005370665", 
              "https://doi.org/10.1007/s11103-009-9579-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11105-011-0293-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050652016", 
              "https://doi.org/10.1007/s11105-011-0293-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11105-010-0203-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010486930", 
              "https://doi.org/10.1007/s11105-010-0203-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12298-008-0026-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012050167", 
              "https://doi.org/10.1007/s12298-008-0026-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11105-009-0127-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025391603", 
              "https://doi.org/10.1007/s11105-009-0127-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11105-010-0267-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035130042", 
              "https://doi.org/10.1007/s11105-010-0267-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11105-010-0257-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022944691", 
              "https://doi.org/10.1007/s11105-010-0257-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35015718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051065086", 
              "https://doi.org/10.1038/35015718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-002-1131-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000462315", 
              "https://doi.org/10.1007/s00122-002-1131-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11105-009-0112-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001949761", 
              "https://doi.org/10.1007/s11105-009-0112-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11105-010-0230-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004334398", 
              "https://doi.org/10.1007/s11105-010-0230-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11105-011-0291-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036106724", 
              "https://doi.org/10.1007/s11105-011-0291-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-05-05", 
        "datePublishedReg": "2011-05-05", 
        "description": "Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a vegetable crop with high water requirement and is adversely affected by drought during cultivation. A genome-wide transcription analysis in response to drought is essential to provide effective genetic engineering strategies to improve stress tolerance in crop plants. To gain a deeper understanding of the mechanisms of drought tolerance in B. rapa, we conducted the first genome-wide analysis of gene expression during a drought model using tag sequencing with a Solexa Illumina array. Leaf samples at four time points, 0\u00a0day, 1\u00a0day, 2\u00a0days, and 3\u00a0days after dehydration treatment, were taken from a B. rapa DH line, T12-19, and the corresponding RNA was used to construct the expression libraries. The total number of tags per library ranged from 5.6 to 7.6 million and, among these, 13,036, 12,472, 12,774, and 12,227 distinct clean tags for the four respective libraries were unambiguously mapped to a publicly available unigene database. The analysis of differentially expressed genes revealed that 1,092 genes were significantly altered in response to water deficit. In this set of genes, we found 37 transcription factors, 28 genes involved in signal transduction, and 61 water- and osmosensing-responsive genes. Overall, the tag sequencing analyses demonstrated a high degree of transcriptional complexity in response to dehydration stress and represents a considerable improvement over microarray data in the large-scale analysis of transcriptional changes.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11105-011-0313-6", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1124107", 
            "issn": [
              "0735-9640", 
              "1556-469X"
            ], 
            "name": "Plant Molecular Biology Reporter", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "keywords": [
          "dehydration stress", 
          "first genome-wide analysis", 
          "effective genetic engineering strategies", 
          "genome-wide analysis", 
          "distinct clean tags", 
          "set of genes", 
          "genetic engineering strategies", 
          "Chinese cabbage", 
          "clean tags", 
          "transcriptional complexity", 
          "stress tolerance", 
          "crop plants", 
          "drought tolerance", 
          "B. rapa", 
          "tag sequencing", 
          "corresponding RNA", 
          "transcription analysis", 
          "signal transduction", 
          "transcriptional changes", 
          "UniGene database", 
          "transcription factors", 
          "T12-19", 
          "DH lines", 
          "large-scale analysis", 
          "expression library", 
          "gene expression", 
          "water deficit", 
          "genes", 
          "microarray data", 
          "vegetable crops", 
          "leaf samples", 
          "sequencing analysis", 
          "Illumina arrays", 
          "dehydration treatment", 
          "engineering strategies", 
          "drought", 
          "high water requirements", 
          "tags", 
          "cabbage", 
          "rapa", 
          "transduction", 
          "tolerance", 
          "respective libraries", 
          "library", 
          "RNA", 
          "plants", 
          "sequencing", 
          "crops", 
          "profiling", 
          "stress", 
          "expression", 
          "high degree", 
          "response", 
          "deeper understanding", 
          "drought model", 
          "cultivation", 
          "water requirements", 
          "analysis", 
          "mechanism", 
          "total number", 
          "lines", 
          "time points", 
          "understanding", 
          "factors", 
          "changes", 
          "array", 
          "days", 
          "number", 
          "water", 
          "strategies", 
          "database", 
          "data", 
          "set", 
          "complexity", 
          "treatment", 
          "samples", 
          "degree", 
          "requirements", 
          "deficits", 
          "model", 
          "point", 
          "improvement", 
          "considerable improvement"
        ], 
        "name": "Transcriptome Profiling of Dehydration Stress in the Chinese Cabbage (Brassica rapa L. ssp. pekinensis) by Tag Sequencing", 
        "pagination": "17-28", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044317000"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11105-011-0313-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11105-011-0313-6", 
          "https://app.dimensions.ai/details/publication/pub.1044317000"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_527.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11105-011-0313-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11105-011-0313-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11105-011-0313-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11105-011-0313-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11105-011-0313-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    242 TRIPLES      21 PREDICATES      124 URIs      99 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11105-011-0313-6 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 anzsrc-for:0607
    4 schema:author N6ade89d0075a4aff942a738fe000dd92
    5 schema:citation sg:pub.10.1007/bf00020016
    6 sg:pub.10.1007/s00122-002-1131-x
    7 sg:pub.10.1007/s00425-003-1105-5
    8 sg:pub.10.1007/s11103-009-9579-6
    9 sg:pub.10.1007/s11105-009-0112-5
    10 sg:pub.10.1007/s11105-009-0127-y
    11 sg:pub.10.1007/s11105-010-0203-3
    12 sg:pub.10.1007/s11105-010-0230-0
    13 sg:pub.10.1007/s11105-010-0257-2
    14 sg:pub.10.1007/s11105-010-0267-0
    15 sg:pub.10.1007/s11105-011-0291-8
    16 sg:pub.10.1007/s11105-011-0293-6
    17 sg:pub.10.1007/s12298-008-0026-y
    18 sg:pub.10.1038/35015718
    19 sg:pub.10.1038/nature03959
    20 sg:pub.10.1038/nature07517
    21 schema:datePublished 2011-05-05
    22 schema:datePublishedReg 2011-05-05
    23 schema:description Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a vegetable crop with high water requirement and is adversely affected by drought during cultivation. A genome-wide transcription analysis in response to drought is essential to provide effective genetic engineering strategies to improve stress tolerance in crop plants. To gain a deeper understanding of the mechanisms of drought tolerance in B. rapa, we conducted the first genome-wide analysis of gene expression during a drought model using tag sequencing with a Solexa Illumina array. Leaf samples at four time points, 0 day, 1 day, 2 days, and 3 days after dehydration treatment, were taken from a B. rapa DH line, T12-19, and the corresponding RNA was used to construct the expression libraries. The total number of tags per library ranged from 5.6 to 7.6 million and, among these, 13,036, 12,472, 12,774, and 12,227 distinct clean tags for the four respective libraries were unambiguously mapped to a publicly available unigene database. The analysis of differentially expressed genes revealed that 1,092 genes were significantly altered in response to water deficit. In this set of genes, we found 37 transcription factors, 28 genes involved in signal transduction, and 61 water- and osmosensing-responsive genes. Overall, the tag sequencing analyses demonstrated a high degree of transcriptional complexity in response to dehydration stress and represents a considerable improvement over microarray data in the large-scale analysis of transcriptional changes.
    24 schema:genre article
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N1032cca4b4a041b2861af281ca728c0f
    27 Nffb019444e994f9bbfdf24090681599c
    28 sg:journal.1124107
    29 schema:keywords B. rapa
    30 Chinese cabbage
    31 DH lines
    32 Illumina arrays
    33 RNA
    34 T12-19
    35 UniGene database
    36 analysis
    37 array
    38 cabbage
    39 changes
    40 clean tags
    41 complexity
    42 considerable improvement
    43 corresponding RNA
    44 crop plants
    45 crops
    46 cultivation
    47 data
    48 database
    49 days
    50 deeper understanding
    51 deficits
    52 degree
    53 dehydration stress
    54 dehydration treatment
    55 distinct clean tags
    56 drought
    57 drought model
    58 drought tolerance
    59 effective genetic engineering strategies
    60 engineering strategies
    61 expression
    62 expression library
    63 factors
    64 first genome-wide analysis
    65 gene expression
    66 genes
    67 genetic engineering strategies
    68 genome-wide analysis
    69 high degree
    70 high water requirements
    71 improvement
    72 large-scale analysis
    73 leaf samples
    74 library
    75 lines
    76 mechanism
    77 microarray data
    78 model
    79 number
    80 plants
    81 point
    82 profiling
    83 rapa
    84 requirements
    85 respective libraries
    86 response
    87 samples
    88 sequencing
    89 sequencing analysis
    90 set
    91 set of genes
    92 signal transduction
    93 strategies
    94 stress
    95 stress tolerance
    96 tag sequencing
    97 tags
    98 time points
    99 tolerance
    100 total number
    101 transcription analysis
    102 transcription factors
    103 transcriptional changes
    104 transcriptional complexity
    105 transduction
    106 treatment
    107 understanding
    108 vegetable crops
    109 water
    110 water deficit
    111 water requirements
    112 schema:name Transcriptome Profiling of Dehydration Stress in the Chinese Cabbage (Brassica rapa L. ssp. pekinensis) by Tag Sequencing
    113 schema:pagination 17-28
    114 schema:productId N2d66e33439fc411396f97344281e967a
    115 Nbe23c6c9fc634e7980447e91ccc8d26b
    116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044317000
    117 https://doi.org/10.1007/s11105-011-0313-6
    118 schema:sdDatePublished 2022-08-04T16:59
    119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    120 schema:sdPublisher N19db7687efde4a97af7c6d17c2033e15
    121 schema:url https://doi.org/10.1007/s11105-011-0313-6
    122 sgo:license sg:explorer/license/
    123 sgo:sdDataset articles
    124 rdf:type schema:ScholarlyArticle
    125 N1032cca4b4a041b2861af281ca728c0f schema:issueNumber 1
    126 rdf:type schema:PublicationIssue
    127 N11be351d64b44a37ad7c8a56e7d7cc2a rdf:first sg:person.014333743647.12
    128 rdf:rest N92003c4f26d846fca806fb8f230eec67
    129 N19db7687efde4a97af7c6d17c2033e15 schema:name Springer Nature - SN SciGraph project
    130 rdf:type schema:Organization
    131 N2d66e33439fc411396f97344281e967a schema:name dimensions_id
    132 schema:value pub.1044317000
    133 rdf:type schema:PropertyValue
    134 N6ade89d0075a4aff942a738fe000dd92 rdf:first sg:person.014275361211.55
    135 rdf:rest Ne7d17691cd3f485884be819922ef5590
    136 N92003c4f26d846fca806fb8f230eec67 rdf:first sg:person.016524265247.45
    137 rdf:rest Nde487bc653ed44f99b1792caacc5d692
    138 N922dd695f49b4f77a6d007f3a6b53cb5 schema:affiliation grid-institutes:None
    139 schema:familyName Wang
    140 schema:givenName Wenhong
    141 rdf:type schema:Person
    142 Nbe23c6c9fc634e7980447e91ccc8d26b schema:name doi
    143 schema:value 10.1007/s11105-011-0313-6
    144 rdf:type schema:PropertyValue
    145 Ncfd8d10f9d6a4ad3a0642031f9cc8d7f rdf:first N922dd695f49b4f77a6d007f3a6b53cb5
    146 rdf:rest rdf:nil
    147 Nde487bc653ed44f99b1792caacc5d692 rdf:first sg:person.011571476353.96
    148 rdf:rest Ncfd8d10f9d6a4ad3a0642031f9cc8d7f
    149 Ne7d17691cd3f485884be819922ef5590 rdf:first sg:person.012143422247.21
    150 rdf:rest N11be351d64b44a37ad7c8a56e7d7cc2a
    151 Nffb019444e994f9bbfdf24090681599c schema:volumeNumber 30
    152 rdf:type schema:PublicationVolume
    153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Biological Sciences
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Genetics
    158 rdf:type schema:DefinedTerm
    159 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Plant Biology
    161 rdf:type schema:DefinedTerm
    162 sg:journal.1124107 schema:issn 0735-9640
    163 1556-469X
    164 schema:name Plant Molecular Biology Reporter
    165 schema:publisher Springer Nature
    166 rdf:type schema:Periodical
    167 sg:person.011571476353.96 schema:affiliation grid-institutes:None
    168 schema:familyName Zhao
    169 schema:givenName Xiuyun
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011571476353.96
    171 rdf:type schema:Person
    172 sg:person.012143422247.21 schema:affiliation grid-institutes:None
    173 schema:familyName Zhang
    174 schema:givenName Fenglan
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012143422247.21
    176 rdf:type schema:Person
    177 sg:person.014275361211.55 schema:affiliation grid-institutes:None
    178 schema:familyName Yu
    179 schema:givenName Shuancang
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014275361211.55
    181 rdf:type schema:Person
    182 sg:person.014333743647.12 schema:affiliation grid-institutes:None
    183 schema:familyName Yu
    184 schema:givenName Yangjun
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014333743647.12
    186 rdf:type schema:Person
    187 sg:person.016524265247.45 schema:affiliation grid-institutes:None
    188 schema:familyName Zhang
    189 schema:givenName Deshuang
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016524265247.45
    191 rdf:type schema:Person
    192 sg:pub.10.1007/bf00020016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037886589
    193 https://doi.org/10.1007/bf00020016
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s00122-002-1131-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000462315
    196 https://doi.org/10.1007/s00122-002-1131-x
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s00425-003-1105-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027618177
    199 https://doi.org/10.1007/s00425-003-1105-5
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s11103-009-9579-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005370665
    202 https://doi.org/10.1007/s11103-009-9579-6
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s11105-009-0112-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001949761
    205 https://doi.org/10.1007/s11105-009-0112-5
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s11105-009-0127-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025391603
    208 https://doi.org/10.1007/s11105-009-0127-y
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s11105-010-0203-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010486930
    211 https://doi.org/10.1007/s11105-010-0203-3
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s11105-010-0230-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004334398
    214 https://doi.org/10.1007/s11105-010-0230-0
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s11105-010-0257-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022944691
    217 https://doi.org/10.1007/s11105-010-0257-2
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s11105-010-0267-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035130042
    220 https://doi.org/10.1007/s11105-010-0267-0
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s11105-011-0291-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036106724
    223 https://doi.org/10.1007/s11105-011-0291-8
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s11105-011-0293-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050652016
    226 https://doi.org/10.1007/s11105-011-0293-6
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s12298-008-0026-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012050167
    229 https://doi.org/10.1007/s12298-008-0026-y
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/35015718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051065086
    232 https://doi.org/10.1038/35015718
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
    235 https://doi.org/10.1038/nature03959
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
    238 https://doi.org/10.1038/nature07517
    239 rdf:type schema:CreativeWork
    240 grid-institutes:None schema:alternateName Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China
    241 schema:name Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), 100097, Beijing, China
    242 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...