Identification of Water Deficit Stress Upregulated Genes in Sugarcane View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-07-29

AUTHORS

Gajjeraman Prabu, Prashant Govindrao Kawar, Madhuri Chandrakant Pagariya, Doddananjappa Theertha Prasad

ABSTRACT

Sugarcane represents an important renewable source among biofuel crops with high capability to assimilate carbon among the C4 plants. Limited availability of freshwater renders this crop uneconomical, warranting the necessity for the development of varieties with higher water use efficiency and tolerant to water deficiency stress. Sugarcane variety cv. Co740 was subjected to varied levels of water deficiency stress to isolate transcripts differentially expressed to the imposed stress. The leaf relative water content was used as a measure to estimate the stress response. PCR-based cDNA suppression subtractive hybridization technique was applied to construct forward subtracted library for differentially expressed genes under stress. Dot blot-selected 158 clones showing elevated response were sequenced, of which 62% resembled similarity with known functional genes, 12% with hypothetical proteins of plant origin, while 26% represented new unknown sequences. Annotation of these differentially expressed sequence tags (ESTs) in the moderately water deficit stress-tolerant cultivar predicted that most of them encoded proteins involved in cellular organization, protein metabolism, signal transduction, and transcription. Further, semi-quantitative reverse transcriptase PCR carried out for five genes projected the involvement of these ESTs in stress alleviation/tolerance. Results from this study may help in targeting useful genes for improving drought tolerance in sugarcane and other grasses. More... »

PAGES

291-304

References to SciGraph publications

  • 2001-02. The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms in PLANT MOLECULAR BIOLOGY
  • 2004-08. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray in PLANT MOLECULAR BIOLOGY
  • 2004-10-05. Cloning of Brassica napus phospholipase C2 (BnPLC2), phosphatidylinositol 3-kinase (BnVPS34) and phosphatidylinositol synthase1 (BnPtdIns S1)—comparative analysis of the effect of abiotic stresses on the expression of phosphatidylinositol signal transduction-related genes in B. napus in PLANTA
  • 2002-09-17. Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghumvulgare: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation in PLANTA
  • 2008-05-29. Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars in PLANT CELL REPORTS
  • 2008-06-17. Identification of grapevine aquaporins and expression analysis in developing berries in PLANT CELL REPORTS
  • 2003-11. Evaluation of Translational Control Mechanisms in Response to Oxygen Deprivation in Maize in RUSSIAN JOURNAL OF PLANT PHYSIOLOGY
  • 2009-10-07. The water-deficit stress- and red-rot-related genes in sugarcane in FUNCTIONAL & INTEGRATIVE GENOMICS
  • 2007-03-14. Polyamines and abiotic stress: recent advances in AMINO ACIDS
  • 2010-02-09. Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance in BMC PLANT BIOLOGY
  • 2006. Phosphoinositide Metabolism: Towards an Understanding of Subcellular Signaling in BIOLOGY OF INOSITOLS AND PHOSPHOINOSITIDES
  • 2007-04-13. Thioredoxins in chloroplasts in CURRENT GENETICS
  • 2007-03-13. Signal transduction-related responses to phytohormones and environmental challenges in sugarcane in BMC GENOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11105-010-0230-0

    DOI

    http://dx.doi.org/10.1007/s11105-010-0230-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004334398


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biotechnology, Karpagam University, Pollachi Main Road, Eachanari Post, 641021, Coimbatore, Tamil Nadu, India", 
              "id": "http://www.grid.ac/institutes/grid.412055.7", 
              "name": [
                "Molecular Biology & Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, 412307, Pune, Maharashtra, India", 
                "Department of Biotechnology, Shivaji University, 416004, Vidyanagar, Kolhapur, Maharashtra, India", 
                "Department of Biotechnology, Karpagam University, Pollachi Main Road, Eachanari Post, 641021, Coimbatore, Tamil Nadu, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prabu", 
            "givenName": "Gajjeraman", 
            "id": "sg:person.01046620174.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046620174.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Molecular Biology & Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, 412307, Pune, Maharashtra, India", 
              "id": "http://www.grid.ac/institutes/grid.32056.32", 
              "name": [
                "Molecular Biology & Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, 412307, Pune, Maharashtra, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kawar", 
            "givenName": "Prashant Govindrao", 
            "id": "sg:person.01366705175.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366705175.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Molecular Biology & Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, 412307, Pune, Maharashtra, India", 
              "id": "http://www.grid.ac/institutes/grid.32056.32", 
              "name": [
                "Molecular Biology & Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, 412307, Pune, Maharashtra, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pagariya", 
            "givenName": "Madhuri Chandrakant", 
            "id": "sg:person.01252456575.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252456575.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biotechnology, University of Agricultural Sciences, GKVK, 560065, Bangaluru, Karnataka, India", 
              "id": "http://www.grid.ac/institutes/grid.413008.e", 
              "name": [
                "Molecular Biology & Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, 412307, Pune, Maharashtra, India", 
                "Department of Biotechnology, University of Agricultural Sciences, GKVK, 560065, Bangaluru, Karnataka, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prasad", 
            "givenName": "Doddananjappa Theertha", 
            "id": "sg:person.01043074437.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043074437.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00726-007-0501-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013855959", 
              "https://doi.org/10.1007/s00726-007-0501-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-27600-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001024674", 
              "https://doi.org/10.1007/0-387-27600-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-004-1389-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034819206", 
              "https://doi.org/10.1007/s00425-004-1389-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10142-009-0144-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037843109", 
              "https://doi.org/10.1007/s10142-009-0144-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-008-0566-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013978522", 
              "https://doi.org/10.1007/s00299-008-0566-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00294-007-0128-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042599262", 
              "https://doi.org/10.1007/s00294-007-0128-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-008-0556-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002871405", 
              "https://doi.org/10.1007/s00299-008-0556-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-8-71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028519822", 
              "https://doi.org/10.1186/1471-2164-8-71"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-005-1969-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009303348", 
              "https://doi.org/10.1007/s11103-005-1969-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-002-0893-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075231413", 
              "https://doi.org/10.1007/s00425-002-0893-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:rupp.0000003275.97021.2b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020679463", 
              "https://doi.org/10.1023/b:rupp.0000003275.97021.2b"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006460231978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052100197", 
              "https://doi.org/10.1023/a:1006460231978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-10-24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005109509", 
              "https://doi.org/10.1186/1471-2229-10-24"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-07-29", 
        "datePublishedReg": "2010-07-29", 
        "description": "Sugarcane represents an important renewable source among biofuel crops with high capability to assimilate carbon among the C4 plants. Limited availability of freshwater renders this crop uneconomical, warranting the necessity for the development of varieties with higher water use efficiency and tolerant to water deficiency stress. Sugarcane variety cv. Co740 was subjected to varied levels of water deficiency stress to isolate transcripts differentially expressed to the imposed stress. The leaf relative water content was used as a measure to estimate the stress response. PCR-based cDNA suppression subtractive hybridization technique was applied to construct forward subtracted library for differentially expressed genes under stress. Dot blot-selected 158 clones showing elevated response were sequenced, of which 62% resembled similarity with known functional genes, 12% with hypothetical proteins of plant origin, while 26% represented new unknown sequences. Annotation of these differentially expressed sequence tags (ESTs) in the moderately water deficit stress-tolerant cultivar predicted that most of them encoded proteins involved in cellular organization, protein metabolism, signal transduction, and transcription. Further, semi-quantitative reverse transcriptase PCR carried out for five genes projected the involvement of these ESTs in stress alleviation/tolerance. Results from this study may help in targeting useful genes for improving drought tolerance in sugarcane and other grasses.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11105-010-0230-0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1124107", 
            "issn": [
              "0735-9640", 
              "1572-9818"
            ], 
            "name": "Plant Molecular Biology Reporter", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "keywords": [
          "deficiency stress", 
          "leaf relative water content", 
          "higher water use efficiency", 
          "suppression subtractive hybridization technique", 
          "water deficiency stress", 
          "stress-tolerant cultivars", 
          "water use efficiency", 
          "relative water content", 
          "development of varieties", 
          "subtractive hybridization technique", 
          "useful genes", 
          "drought tolerance", 
          "hypothetical proteins", 
          "functional genes", 
          "sequence tags", 
          "C4 plants", 
          "signal transduction", 
          "biofuel crops", 
          "use efficiency", 
          "upregulated genes", 
          "cellular organization", 
          "stress response", 
          "semi-quantitative reverse", 
          "genes", 
          "sugarcane", 
          "unknown sequences", 
          "water content", 
          "crops", 
          "plant origin", 
          "protein metabolism", 
          "hybridization technique", 
          "protein", 
          "tolerance", 
          "varied levels", 
          "PCR", 
          "limited availability", 
          "cultivars", 
          "transcription", 
          "ESTs", 
          "transduction", 
          "grass", 
          "transcripts", 
          "stress", 
          "plants", 
          "clones", 
          "important renewable source", 
          "annotation", 
          "sequence", 
          "metabolism", 
          "tags", 
          "elevated response", 
          "availability", 
          "renewable sources", 
          "response", 
          "similarity", 
          "identification", 
          "library", 
          "variety", 
          "content", 
          "carbon", 
          "high capability", 
          "origin", 
          "efficiency", 
          "source", 
          "involvement", 
          "renders", 
          "development", 
          "levels", 
          "reverse", 
          "organization", 
          "study", 
          "measures", 
          "necessity", 
          "results", 
          "capability", 
          "technique", 
          "dots"
        ], 
        "name": "Identification of Water Deficit Stress Upregulated Genes in Sugarcane", 
        "pagination": "291-304", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004334398"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11105-010-0230-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11105-010-0230-0", 
          "https://app.dimensions.ai/details/publication/pub.1004334398"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11105-010-0230-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11105-010-0230-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11105-010-0230-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11105-010-0230-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11105-010-0230-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    224 TRIPLES      21 PREDICATES      116 URIs      93 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11105-010-0230-0 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 anzsrc-for:0604
    4 anzsrc-for:0607
    5 schema:author Nd0d5fcfc0c73449fb2cf137eede4ee8d
    6 schema:citation sg:pub.10.1007/0-387-27600-9_8
    7 sg:pub.10.1007/s00294-007-0128-z
    8 sg:pub.10.1007/s00299-008-0556-3
    9 sg:pub.10.1007/s00299-008-0566-1
    10 sg:pub.10.1007/s00425-002-0893-3
    11 sg:pub.10.1007/s00425-004-1389-0
    12 sg:pub.10.1007/s00726-007-0501-8
    13 sg:pub.10.1007/s10142-009-0144-9
    14 sg:pub.10.1007/s11103-005-1969-9
    15 sg:pub.10.1023/a:1006460231978
    16 sg:pub.10.1023/b:rupp.0000003275.97021.2b
    17 sg:pub.10.1186/1471-2164-8-71
    18 sg:pub.10.1186/1471-2229-10-24
    19 schema:datePublished 2010-07-29
    20 schema:datePublishedReg 2010-07-29
    21 schema:description Sugarcane represents an important renewable source among biofuel crops with high capability to assimilate carbon among the C4 plants. Limited availability of freshwater renders this crop uneconomical, warranting the necessity for the development of varieties with higher water use efficiency and tolerant to water deficiency stress. Sugarcane variety cv. Co740 was subjected to varied levels of water deficiency stress to isolate transcripts differentially expressed to the imposed stress. The leaf relative water content was used as a measure to estimate the stress response. PCR-based cDNA suppression subtractive hybridization technique was applied to construct forward subtracted library for differentially expressed genes under stress. Dot blot-selected 158 clones showing elevated response were sequenced, of which 62% resembled similarity with known functional genes, 12% with hypothetical proteins of plant origin, while 26% represented new unknown sequences. Annotation of these differentially expressed sequence tags (ESTs) in the moderately water deficit stress-tolerant cultivar predicted that most of them encoded proteins involved in cellular organization, protein metabolism, signal transduction, and transcription. Further, semi-quantitative reverse transcriptase PCR carried out for five genes projected the involvement of these ESTs in stress alleviation/tolerance. Results from this study may help in targeting useful genes for improving drought tolerance in sugarcane and other grasses.
    22 schema:genre article
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N988f3437adce460e8fcf3f9e60f940ff
    25 Na9a5af07e2c349cdb7be33d458d9330f
    26 sg:journal.1124107
    27 schema:keywords C4 plants
    28 ESTs
    29 PCR
    30 annotation
    31 availability
    32 biofuel crops
    33 capability
    34 carbon
    35 cellular organization
    36 clones
    37 content
    38 crops
    39 cultivars
    40 deficiency stress
    41 development
    42 development of varieties
    43 dots
    44 drought tolerance
    45 efficiency
    46 elevated response
    47 functional genes
    48 genes
    49 grass
    50 high capability
    51 higher water use efficiency
    52 hybridization technique
    53 hypothetical proteins
    54 identification
    55 important renewable source
    56 involvement
    57 leaf relative water content
    58 levels
    59 library
    60 limited availability
    61 measures
    62 metabolism
    63 necessity
    64 organization
    65 origin
    66 plant origin
    67 plants
    68 protein
    69 protein metabolism
    70 relative water content
    71 renders
    72 renewable sources
    73 response
    74 results
    75 reverse
    76 semi-quantitative reverse
    77 sequence
    78 sequence tags
    79 signal transduction
    80 similarity
    81 source
    82 stress
    83 stress response
    84 stress-tolerant cultivars
    85 study
    86 subtractive hybridization technique
    87 sugarcane
    88 suppression subtractive hybridization technique
    89 tags
    90 technique
    91 tolerance
    92 transcription
    93 transcripts
    94 transduction
    95 unknown sequences
    96 upregulated genes
    97 use efficiency
    98 useful genes
    99 varied levels
    100 variety
    101 water content
    102 water deficiency stress
    103 water use efficiency
    104 schema:name Identification of Water Deficit Stress Upregulated Genes in Sugarcane
    105 schema:pagination 291-304
    106 schema:productId N10bb3087398f45e991072031747c474f
    107 N7a96fcdb721e498f9aa4cc58b5df2ed3
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004334398
    109 https://doi.org/10.1007/s11105-010-0230-0
    110 schema:sdDatePublished 2022-09-02T15:53
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher Nfa3a592dfc3d46eea68e2852fec9043e
    113 schema:url https://doi.org/10.1007/s11105-010-0230-0
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N10bb3087398f45e991072031747c474f schema:name dimensions_id
    118 schema:value pub.1004334398
    119 rdf:type schema:PropertyValue
    120 N3f6bb24ee1fe41b6aecb334039df947c rdf:first sg:person.01252456575.96
    121 rdf:rest N62b725d8dcaa47c09409893531307724
    122 N62b725d8dcaa47c09409893531307724 rdf:first sg:person.01043074437.29
    123 rdf:rest rdf:nil
    124 N7a96fcdb721e498f9aa4cc58b5df2ed3 schema:name doi
    125 schema:value 10.1007/s11105-010-0230-0
    126 rdf:type schema:PropertyValue
    127 N974ea0eebde046ad8eeb5d80874f6f19 rdf:first sg:person.01366705175.48
    128 rdf:rest N3f6bb24ee1fe41b6aecb334039df947c
    129 N988f3437adce460e8fcf3f9e60f940ff schema:volumeNumber 29
    130 rdf:type schema:PublicationVolume
    131 Na9a5af07e2c349cdb7be33d458d9330f schema:issueNumber 2
    132 rdf:type schema:PublicationIssue
    133 Nd0d5fcfc0c73449fb2cf137eede4ee8d rdf:first sg:person.01046620174.97
    134 rdf:rest N974ea0eebde046ad8eeb5d80874f6f19
    135 Nfa3a592dfc3d46eea68e2852fec9043e schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Biological Sciences
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Biochemistry and Cell Biology
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Genetics
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Plant Biology
    148 rdf:type schema:DefinedTerm
    149 sg:journal.1124107 schema:issn 0735-9640
    150 1572-9818
    151 schema:name Plant Molecular Biology Reporter
    152 schema:publisher Springer Nature
    153 rdf:type schema:Periodical
    154 sg:person.01043074437.29 schema:affiliation grid-institutes:grid.413008.e
    155 schema:familyName Prasad
    156 schema:givenName Doddananjappa Theertha
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043074437.29
    158 rdf:type schema:Person
    159 sg:person.01046620174.97 schema:affiliation grid-institutes:grid.412055.7
    160 schema:familyName Prabu
    161 schema:givenName Gajjeraman
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046620174.97
    163 rdf:type schema:Person
    164 sg:person.01252456575.96 schema:affiliation grid-institutes:grid.32056.32
    165 schema:familyName Pagariya
    166 schema:givenName Madhuri Chandrakant
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252456575.96
    168 rdf:type schema:Person
    169 sg:person.01366705175.48 schema:affiliation grid-institutes:grid.32056.32
    170 schema:familyName Kawar
    171 schema:givenName Prashant Govindrao
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366705175.48
    173 rdf:type schema:Person
    174 sg:pub.10.1007/0-387-27600-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001024674
    175 https://doi.org/10.1007/0-387-27600-9_8
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s00294-007-0128-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042599262
    178 https://doi.org/10.1007/s00294-007-0128-z
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s00299-008-0556-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002871405
    181 https://doi.org/10.1007/s00299-008-0556-3
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s00299-008-0566-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013978522
    184 https://doi.org/10.1007/s00299-008-0566-1
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s00425-002-0893-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075231413
    187 https://doi.org/10.1007/s00425-002-0893-3
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s00425-004-1389-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034819206
    190 https://doi.org/10.1007/s00425-004-1389-0
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s00726-007-0501-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013855959
    193 https://doi.org/10.1007/s00726-007-0501-8
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s10142-009-0144-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037843109
    196 https://doi.org/10.1007/s10142-009-0144-9
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s11103-005-1969-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009303348
    199 https://doi.org/10.1007/s11103-005-1969-9
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1023/a:1006460231978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052100197
    202 https://doi.org/10.1023/a:1006460231978
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1023/b:rupp.0000003275.97021.2b schema:sameAs https://app.dimensions.ai/details/publication/pub.1020679463
    205 https://doi.org/10.1023/b:rupp.0000003275.97021.2b
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1186/1471-2164-8-71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028519822
    208 https://doi.org/10.1186/1471-2164-8-71
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1186/1471-2229-10-24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005109509
    211 https://doi.org/10.1186/1471-2229-10-24
    212 rdf:type schema:CreativeWork
    213 grid-institutes:grid.32056.32 schema:alternateName Molecular Biology & Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, 412307, Pune, Maharashtra, India
    214 schema:name Molecular Biology & Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, 412307, Pune, Maharashtra, India
    215 rdf:type schema:Organization
    216 grid-institutes:grid.412055.7 schema:alternateName Department of Biotechnology, Karpagam University, Pollachi Main Road, Eachanari Post, 641021, Coimbatore, Tamil Nadu, India
    217 schema:name Department of Biotechnology, Karpagam University, Pollachi Main Road, Eachanari Post, 641021, Coimbatore, Tamil Nadu, India
    218 Department of Biotechnology, Shivaji University, 416004, Vidyanagar, Kolhapur, Maharashtra, India
    219 Molecular Biology & Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, 412307, Pune, Maharashtra, India
    220 rdf:type schema:Organization
    221 grid-institutes:grid.413008.e schema:alternateName Department of Biotechnology, University of Agricultural Sciences, GKVK, 560065, Bangaluru, Karnataka, India
    222 schema:name Department of Biotechnology, University of Agricultural Sciences, GKVK, 560065, Bangaluru, Karnataka, India
    223 Molecular Biology & Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, 412307, Pune, Maharashtra, India
    224 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...