Conservation agriculture, increased organic carbon in the top-soil macro-aggregates and reduced soil CO2 emissions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12-30

AUTHORS

Mariela Fuentes, Claudia Hidalgo, Jorge Etchevers, Fernando De León, Armando Guerrero, Luc Dendooven, Nele Verhulst, Bram Govaerts

ABSTRACT

Background and aimsConservation agriculture, the combination of minimal soil movement (zero or reduced tillage), crop residue retention and crop rotation, might have the potential to increase soil organic C content and reduce emissions of CO2.MethodsThree management factors were analyzed: (1) tillage (zero tillage (ZT) or conventional tillage (CT)), (2) crop rotation (wheat monoculture (W), maize monoculture (M) and maize-wheat rotation (R)), and (3) residue management (with (+r), or without (−r) crop residues). Samples were taken from the 0–5 and 5–10 cm soil layers and separated in micro-aggregates (< 0.25 mm), small macro-aggregates (0.25 to 1 mm) and large macro-aggregates (1 to 8 mm). The carbon content of each aggregate fraction was determined.ResultsZero tillage combined with crop rotation and crop residues retention resulted in a higher proportion of macro-aggregates. In the 0–5 cm layer, plots with a crop rotation and monoculture of maize and wheat in ZT+r had the greatest proportion of large stable macro-aggregates (40%) and highest mean weighted diameter (MWD) (1.7 mm). The plots with CT had the largest proportion of micro-aggregates (27%). In the 5–10 cm layer, plots with residue retention in both CT and ZT (maize 1 mm and wheat 1.5 mm) or with monoculture of wheat in plots under ZT without residues (1.4 mm) had the greatest MWD. The 0–10 cm soil layer had a greater proportion of small macroaggregates compared to large macro-aggregates and micro-aggregates. In the 0–10 cm layer of soil with residues retention and maize or wheat, the greatest C content was found in the small and large macro-aggregates. The small macro-aggregates contributed most C to the organic C of the sample. For soil cultivated with maize, the CT treatments had significantly higher CO2 emissions than the ZT treatments. For soil cultivated with wheat, CTR-r had significantly higher CO2 emissions than all other treatments.ConclusionReduction in soil disturbance combined with residue retention increased the C retained in the small and large macro-aggregates of the top soil due to greater aggregate stability and reduced the emissions of CO2 compared with conventional tillage without residues retention and maize monoculture (a cultivation system normally used in the central highlands of Mexico). More... »

PAGES

183-197

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11104-011-1092-4

DOI

http://dx.doi.org/10.1007/s11104-011-1092-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036112487


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratorio de Fisiolog\u00eda y Tecnolog\u00eda de Cultivos, Universidad Aut\u00f3noma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960, M\u00e9xico, D.F., Mexico", 
          "id": "http://www.grid.ac/institutes/grid.7220.7", 
          "name": [
            "Laboratorio de Fisiolog\u00eda y Tecnolog\u00eda de Cultivos, Universidad Aut\u00f3noma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960, M\u00e9xico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fuentes", 
        "givenName": "Mariela", 
        "id": "sg:person.0735627374.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735627374.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratorio de Fertilidad, Colegio de Postgraduados, IRENAT, Km 36.5 Carretera M\u00e9xico-Texcoco, CP 56230, Montecillo, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.418752.d", 
          "name": [
            "Laboratorio de Fertilidad, Colegio de Postgraduados, IRENAT, Km 36.5 Carretera M\u00e9xico-Texcoco, CP 56230, Montecillo, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hidalgo", 
        "givenName": "Claudia", 
        "id": "sg:person.0775560443.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775560443.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratorio de Fertilidad, Colegio de Postgraduados, IRENAT, Km 36.5 Carretera M\u00e9xico-Texcoco, CP 56230, Montecillo, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.418752.d", 
          "name": [
            "Laboratorio de Fertilidad, Colegio de Postgraduados, IRENAT, Km 36.5 Carretera M\u00e9xico-Texcoco, CP 56230, Montecillo, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Etchevers", 
        "givenName": "Jorge", 
        "id": "sg:person.07667246677.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667246677.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratorio de Fisiolog\u00eda y Tecnolog\u00eda de Cultivos, Universidad Aut\u00f3noma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960, M\u00e9xico, D.F., Mexico", 
          "id": "http://www.grid.ac/institutes/grid.7220.7", 
          "name": [
            "Laboratorio de Fisiolog\u00eda y Tecnolog\u00eda de Cultivos, Universidad Aut\u00f3noma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960, M\u00e9xico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Le\u00f3n", 
        "givenName": "Fernando", 
        "id": "sg:person.011352745553.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011352745553.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratorio de Suelos, Plantas y Aguas, Campus Tabasco, Colegio de Postgraduados, Supera-Anuies, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.418752.d", 
          "name": [
            "Laboratorio de Suelos, Plantas y Aguas, Campus Tabasco, Colegio de Postgraduados, Supera-Anuies, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guerrero", 
        "givenName": "Armando", 
        "id": "sg:person.014710444153.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014710444153.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cinvestav, Av. Instituto Polit\u00e9cnico Nacional 2508, C.P. 07360, M\u00e9xico, D.F., Mexico", 
          "id": "http://www.grid.ac/institutes/grid.512574.0", 
          "name": [
            "Cinvestav, Av. Instituto Polit\u00e9cnico Nacional 2508, C.P. 07360, M\u00e9xico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dendooven", 
        "givenName": "Luc", 
        "id": "sg:person.01137236547.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137236547.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Centre (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico", 
          "id": "http://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Centre (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verhulst", 
        "givenName": "Nele", 
        "id": "sg:person.01367713547.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367713547.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Centre (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico", 
          "id": "http://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Centre (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Govaerts", 
        "givenName": "Bram", 
        "id": "sg:person.01075267707.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075267707.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11104-011-0728-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006419580", 
          "https://doi.org/10.1007/s11104-011-0728-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02205590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047131435", 
          "https://doi.org/10.1007/bf02205590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-008-9557-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023296335", 
          "https://doi.org/10.1007/s11104-008-9557-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12-30", 
    "datePublishedReg": "2011-12-30", 
    "description": "Background and aimsConservation agriculture, the combination of minimal soil movement (zero or reduced tillage), crop residue retention and crop rotation, might have the potential to increase soil organic C content and reduce emissions of CO2.MethodsThree management factors were analyzed: (1) tillage (zero tillage (ZT) or conventional tillage (CT)), (2) crop rotation (wheat monoculture (W), maize monoculture (M) and maize-wheat rotation (R)), and (3) residue management (with (+r), or without (\u2212r) crop residues). Samples were taken from the 0\u20135 and 5\u201310\u00a0cm soil layers and separated in micro-aggregates (< 0.25\u00a0mm), small macro-aggregates (0.25 to 1\u00a0mm) and large macro-aggregates (1 to 8\u00a0mm). The carbon content of each aggregate fraction was determined.ResultsZero tillage combined with crop rotation and crop residues retention resulted in a higher proportion of macro-aggregates. In the 0\u20135\u00a0cm layer, plots with a crop rotation and monoculture of maize and wheat in ZT+r had the greatest proportion of large stable macro-aggregates (40%) and highest mean weighted diameter (MWD) (1.7\u00a0mm). The plots with CT had the largest proportion of micro-aggregates (27%). In the 5\u201310\u00a0cm layer, plots with residue retention in both CT and ZT (maize 1\u00a0mm and wheat 1.5\u00a0mm) or with monoculture of wheat in plots under ZT without residues (1.4\u00a0mm) had the greatest MWD. The 0\u201310\u00a0cm soil layer had a greater proportion of small macroaggregates compared to large macro-aggregates and micro-aggregates. In the 0\u201310\u00a0cm layer of soil with residues retention and maize or wheat, the greatest C content was found in the small and large macro-aggregates. The small macro-aggregates contributed most C to the organic C of the sample. For soil cultivated with maize, the CT treatments had significantly higher CO2 emissions than the ZT treatments. For soil cultivated with wheat, CTR-r had significantly higher CO2 emissions than all other treatments.ConclusionReduction in soil disturbance combined with residue retention increased the C retained in the small and large macro-aggregates of the top soil due to greater aggregate stability and reduced the emissions of CO2 compared with conventional tillage without residues retention and maize monoculture (a cultivation system normally used in the central highlands of Mexico).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11104-011-1092-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1126575", 
        "issn": [
          "0032-079X", 
          "1573-5036"
        ], 
        "name": "Plant and Soil", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "355"
      }
    ], 
    "keywords": [
      "crop residue retention", 
      "residue retention", 
      "crop rotation", 
      "soil layer", 
      "higher CO2 emissions", 
      "minimal soil movement", 
      "soil organic C content", 
      "monoculture of maize", 
      "monoculture of wheat", 
      "greater aggregate stability", 
      "soil CO2 emissions", 
      "C content", 
      "organic C content", 
      "layer of soil", 
      "residue management", 
      "greater C content", 
      "conventional tillage", 
      "maize monoculture", 
      "conservation agriculture", 
      "soil disturbance", 
      "management factors", 
      "ZT treatment", 
      "aggregate stability", 
      "wheat", 
      "greater MWD", 
      "CT treatment", 
      "top soil", 
      "tillage", 
      "monoculture", 
      "maize", 
      "small macroaggregates", 
      "soil", 
      "plots", 
      "greater proportion", 
      "CO2 emissions", 
      "emissions of CO2", 
      "agriculture", 
      "organic carbon", 
      "aggregate fractions", 
      "carbon content", 
      "rotation", 
      "soil movement", 
      "content", 
      "macroaggregates", 
      "higher proportion", 
      "large proportion", 
      "ZT", 
      "proportion", 
      "retention", 
      "emission", 
      "management", 
      "MWD", 
      "carbon", 
      "residues", 
      "treatment", 
      "potential", 
      "disturbances", 
      "diameter", 
      "CO2", 
      "combination", 
      "samples", 
      "factors", 
      "CTR", 
      "background", 
      "layer", 
      "movement", 
      "fraction", 
      "ConclusionReduction", 
      "stability", 
      "CT"
    ], 
    "name": "Conservation agriculture, increased organic carbon in the top-soil macro-aggregates and reduced soil CO2 emissions", 
    "pagination": "183-197", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036112487"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11104-011-1092-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11104-011-1092-4", 
      "https://app.dimensions.ai/details/publication/pub.1036112487"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11104-011-1092-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11104-011-1092-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11104-011-1092-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11104-011-1092-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11104-011-1092-4'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      97 URIs      86 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11104-011-1092-4 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author N7b24d2919d83475e83d3effacdcd8130
4 schema:citation sg:pub.10.1007/bf02205590
5 sg:pub.10.1007/s11104-008-9557-9
6 sg:pub.10.1007/s11104-011-0728-8
7 schema:datePublished 2011-12-30
8 schema:datePublishedReg 2011-12-30
9 schema:description Background and aimsConservation agriculture, the combination of minimal soil movement (zero or reduced tillage), crop residue retention and crop rotation, might have the potential to increase soil organic C content and reduce emissions of CO2.MethodsThree management factors were analyzed: (1) tillage (zero tillage (ZT) or conventional tillage (CT)), (2) crop rotation (wheat monoculture (W), maize monoculture (M) and maize-wheat rotation (R)), and (3) residue management (with (+r), or without (−r) crop residues). Samples were taken from the 0–5 and 5–10 cm soil layers and separated in micro-aggregates (< 0.25 mm), small macro-aggregates (0.25 to 1 mm) and large macro-aggregates (1 to 8 mm). The carbon content of each aggregate fraction was determined.ResultsZero tillage combined with crop rotation and crop residues retention resulted in a higher proportion of macro-aggregates. In the 0–5 cm layer, plots with a crop rotation and monoculture of maize and wheat in ZT+r had the greatest proportion of large stable macro-aggregates (40%) and highest mean weighted diameter (MWD) (1.7 mm). The plots with CT had the largest proportion of micro-aggregates (27%). In the 5–10 cm layer, plots with residue retention in both CT and ZT (maize 1 mm and wheat 1.5 mm) or with monoculture of wheat in plots under ZT without residues (1.4 mm) had the greatest MWD. The 0–10 cm soil layer had a greater proportion of small macroaggregates compared to large macro-aggregates and micro-aggregates. In the 0–10 cm layer of soil with residues retention and maize or wheat, the greatest C content was found in the small and large macro-aggregates. The small macro-aggregates contributed most C to the organic C of the sample. For soil cultivated with maize, the CT treatments had significantly higher CO2 emissions than the ZT treatments. For soil cultivated with wheat, CTR-r had significantly higher CO2 emissions than all other treatments.ConclusionReduction in soil disturbance combined with residue retention increased the C retained in the small and large macro-aggregates of the top soil due to greater aggregate stability and reduced the emissions of CO2 compared with conventional tillage without residues retention and maize monoculture (a cultivation system normally used in the central highlands of Mexico).
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N78a5b6129b8a47a2aa68463b0e16ed00
13 Ne84a9c21d6274b8eaa7d4d03b72987e8
14 sg:journal.1126575
15 schema:keywords C content
16 CO2
17 CO2 emissions
18 CT
19 CT treatment
20 CTR
21 ConclusionReduction
22 MWD
23 ZT
24 ZT treatment
25 aggregate fractions
26 aggregate stability
27 agriculture
28 background
29 carbon
30 carbon content
31 combination
32 conservation agriculture
33 content
34 conventional tillage
35 crop residue retention
36 crop rotation
37 diameter
38 disturbances
39 emission
40 emissions of CO2
41 factors
42 fraction
43 greater C content
44 greater MWD
45 greater aggregate stability
46 greater proportion
47 higher CO2 emissions
48 higher proportion
49 large proportion
50 layer
51 layer of soil
52 macroaggregates
53 maize
54 maize monoculture
55 management
56 management factors
57 minimal soil movement
58 monoculture
59 monoculture of maize
60 monoculture of wheat
61 movement
62 organic C content
63 organic carbon
64 plots
65 potential
66 proportion
67 residue management
68 residue retention
69 residues
70 retention
71 rotation
72 samples
73 small macroaggregates
74 soil
75 soil CO2 emissions
76 soil disturbance
77 soil layer
78 soil movement
79 soil organic C content
80 stability
81 tillage
82 top soil
83 treatment
84 wheat
85 schema:name Conservation agriculture, increased organic carbon in the top-soil macro-aggregates and reduced soil CO2 emissions
86 schema:pagination 183-197
87 schema:productId N7f9df46df08446eaadc4ea683602c0ca
88 Na8a19bfb8bfe4ff6b2b810dbfcd28cf1
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036112487
90 https://doi.org/10.1007/s11104-011-1092-4
91 schema:sdDatePublished 2022-10-01T06:36
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Ne201380df791432ab12b44852f689872
94 schema:url https://doi.org/10.1007/s11104-011-1092-4
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N137ff1e3fe0d4a5b985f3f81f740fed1 rdf:first sg:person.01137236547.78
99 rdf:rest N4797191230ef491997d61c0a55313002
100 N4797191230ef491997d61c0a55313002 rdf:first sg:person.01367713547.82
101 rdf:rest Nb0d39a8014ff42e0930bd2e5d325a30a
102 N6a4d023159a04552853b466a03c070cf rdf:first sg:person.014710444153.81
103 rdf:rest N137ff1e3fe0d4a5b985f3f81f740fed1
104 N78a5b6129b8a47a2aa68463b0e16ed00 schema:issueNumber 1-2
105 rdf:type schema:PublicationIssue
106 N7b24d2919d83475e83d3effacdcd8130 rdf:first sg:person.0735627374.56
107 rdf:rest Nd53fa449e3b2448ba09162f7c8bccab2
108 N7f9df46df08446eaadc4ea683602c0ca schema:name doi
109 schema:value 10.1007/s11104-011-1092-4
110 rdf:type schema:PropertyValue
111 Na8a19bfb8bfe4ff6b2b810dbfcd28cf1 schema:name dimensions_id
112 schema:value pub.1036112487
113 rdf:type schema:PropertyValue
114 Nb0d39a8014ff42e0930bd2e5d325a30a rdf:first sg:person.01075267707.03
115 rdf:rest rdf:nil
116 Nd53fa449e3b2448ba09162f7c8bccab2 rdf:first sg:person.0775560443.25
117 rdf:rest Nea21a6e26d614b57ad8a8458a8814d84
118 Ndc0e0475881c47a6af090e8dd2d8298f rdf:first sg:person.011352745553.80
119 rdf:rest N6a4d023159a04552853b466a03c070cf
120 Ne201380df791432ab12b44852f689872 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 Ne84a9c21d6274b8eaa7d4d03b72987e8 schema:volumeNumber 355
123 rdf:type schema:PublicationVolume
124 Nea21a6e26d614b57ad8a8458a8814d84 rdf:first sg:person.07667246677.93
125 rdf:rest Ndc0e0475881c47a6af090e8dd2d8298f
126 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
127 schema:name Environmental Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
130 schema:name Soil Sciences
131 rdf:type schema:DefinedTerm
132 sg:journal.1126575 schema:issn 0032-079X
133 1573-5036
134 schema:name Plant and Soil
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.01075267707.03 schema:affiliation grid-institutes:grid.433436.5
138 schema:familyName Govaerts
139 schema:givenName Bram
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075267707.03
141 rdf:type schema:Person
142 sg:person.011352745553.80 schema:affiliation grid-institutes:grid.7220.7
143 schema:familyName De León
144 schema:givenName Fernando
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011352745553.80
146 rdf:type schema:Person
147 sg:person.01137236547.78 schema:affiliation grid-institutes:grid.512574.0
148 schema:familyName Dendooven
149 schema:givenName Luc
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137236547.78
151 rdf:type schema:Person
152 sg:person.01367713547.82 schema:affiliation grid-institutes:grid.433436.5
153 schema:familyName Verhulst
154 schema:givenName Nele
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367713547.82
156 rdf:type schema:Person
157 sg:person.014710444153.81 schema:affiliation grid-institutes:grid.418752.d
158 schema:familyName Guerrero
159 schema:givenName Armando
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014710444153.81
161 rdf:type schema:Person
162 sg:person.0735627374.56 schema:affiliation grid-institutes:grid.7220.7
163 schema:familyName Fuentes
164 schema:givenName Mariela
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735627374.56
166 rdf:type schema:Person
167 sg:person.07667246677.93 schema:affiliation grid-institutes:grid.418752.d
168 schema:familyName Etchevers
169 schema:givenName Jorge
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667246677.93
171 rdf:type schema:Person
172 sg:person.0775560443.25 schema:affiliation grid-institutes:grid.418752.d
173 schema:familyName Hidalgo
174 schema:givenName Claudia
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775560443.25
176 rdf:type schema:Person
177 sg:pub.10.1007/bf02205590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047131435
178 https://doi.org/10.1007/bf02205590
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s11104-008-9557-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023296335
181 https://doi.org/10.1007/s11104-008-9557-9
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s11104-011-0728-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006419580
184 https://doi.org/10.1007/s11104-011-0728-8
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.418752.d schema:alternateName Laboratorio de Fertilidad, Colegio de Postgraduados, IRENAT, Km 36.5 Carretera México-Texcoco, CP 56230, Montecillo, Mexico
187 Laboratorio de Suelos, Plantas y Aguas, Campus Tabasco, Colegio de Postgraduados, Supera-Anuies, Mexico
188 schema:name Laboratorio de Fertilidad, Colegio de Postgraduados, IRENAT, Km 36.5 Carretera México-Texcoco, CP 56230, Montecillo, Mexico
189 Laboratorio de Suelos, Plantas y Aguas, Campus Tabasco, Colegio de Postgraduados, Supera-Anuies, Mexico
190 rdf:type schema:Organization
191 grid-institutes:grid.433436.5 schema:alternateName International Maize and Wheat Improvement Centre (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico
192 schema:name International Maize and Wheat Improvement Centre (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico
193 rdf:type schema:Organization
194 grid-institutes:grid.512574.0 schema:alternateName Cinvestav, Av. Instituto Politécnico Nacional 2508, C.P. 07360, México, D.F., Mexico
195 schema:name Cinvestav, Av. Instituto Politécnico Nacional 2508, C.P. 07360, México, D.F., Mexico
196 rdf:type schema:Organization
197 grid-institutes:grid.7220.7 schema:alternateName Laboratorio de Fisiología y Tecnología de Cultivos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960, México, D.F., Mexico
198 schema:name Laboratorio de Fisiología y Tecnología de Cultivos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960, México, D.F., Mexico
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...