Identification of variables influencing pharmaceutical interventions to improve medication review efficiency View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06-02

AUTHORS

Lauriane Cornuault, Victorine Mouchel, Thuy-Tan Phan Thi, Hélène Beaussier, Yvonnick Bézie, Jennifer Corny

ABSTRACT

Background Clinical pharmacists’ involvement has improved patients’ care, by suggesting therapeutic optimizations. However, budget restrictions require a prioritization of these activities to focus resources on patients more at risk of medication errors. Objective The aim of our study was to identify variables influencing the formulation of pharmaceutical to improve medication review efficiency. Setting This study was conducted in medical wards of a 643-acute beds hospital in Paris, France. Methods All hospital medical prescriptions of all patients admitted within four medical wards (cardiology, rheumatology, neurology, vascular medicine) were analyzed. The study was conducted in each ward for 2 weeks, during 4 weeks. For each patient, variables prospectively collected were: age, gender, weight, emergency admission, number of high-alert medications and of total drugs prescribed, care unit, serum creatinine. Number of pharmaceutical interventions (PIs) and their type were reported. Main outcome measures Variables influencing the number of pharmaceutical interventions during medication review were identified using simple and multiple linear regressions. Results A total of 2328 drug prescriptions (303 patients, mean age 70.6 years-old) were analyzed. Mean number of hospital drug prescriptions was 7.9. A total of 318 PIs were formulated. Most frequent PIs were drug omission (n = 88, 27.7%), overdosing (n = 69, 21.7%), and underdosing (n = 51, 16.0%). Among variables studied, age, serum creatinine level, number of high-alert medications prescribed and total number of drugs prescribed were significantly associated with the formulation of pharmaceutical interventions (adjusted R2 = 0.34). Conclusions This study identified variables (age, serum creatinine level, number of high-alert medication, number of prescribed drugs) that may help institutions/pharmacists target their reviews towards patients most likely to require pharmacist interventions. More... »

PAGES

1175-1179

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11096-018-0668-y

DOI

http://dx.doi.org/10.1007/s11096-018-0668-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104347838

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29860706


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medication Errors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medication Therapy Management", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmacists", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmacy Service, Hospital", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Practice Patterns, Physicians'", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Professional Role", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Groupe Hospitalier Paris Saint Joseph, Paris, \u00cele-de-France, France", 
          "id": "http://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Groupe Hospitalier Paris Saint Joseph, Paris, \u00cele-de-France, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cornuault", 
        "givenName": "Lauriane", 
        "id": "sg:person.011574377645.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011574377645.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Groupe Hospitalier Paris Saint Joseph, Paris, \u00cele-de-France, France", 
          "id": "http://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Groupe Hospitalier Paris Saint Joseph, Paris, \u00cele-de-France, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mouchel", 
        "givenName": "Victorine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Groupe Hospitalier Paris Saint Joseph, Paris, \u00cele-de-France, France", 
          "id": "http://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Groupe Hospitalier Paris Saint Joseph, Paris, \u00cele-de-France, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Phan Thi", 
        "givenName": "Thuy-Tan", 
        "id": "sg:person.014012175057.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014012175057.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Groupe Hospitalier Paris Saint Joseph, Paris, \u00cele-de-France, France", 
          "id": "http://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Groupe Hospitalier Paris Saint Joseph, Paris, \u00cele-de-France, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beaussier", 
        "givenName": "H\u00e9l\u00e8ne", 
        "id": "sg:person.01116256712.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116256712.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Groupe Hospitalier Paris Saint Joseph, Paris, \u00cele-de-France, France", 
          "id": "http://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Groupe Hospitalier Paris Saint Joseph, Paris, \u00cele-de-France, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e9zie", 
        "givenName": "Yvonnick", 
        "id": "sg:person.0743167661.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743167661.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Groupe Hospitalier Paris Saint Joseph, Paris, \u00cele-de-France, France", 
          "id": "http://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Groupe Hospitalier Paris Saint Joseph, Paris, \u00cele-de-France, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corny", 
        "givenName": "Jennifer", 
        "id": "sg:person.01141133703.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141133703.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11096-014-9991-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034173938", 
          "https://doi.org/10.1007/s11096-014-9991-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40360-017-0157-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086327234", 
          "https://doi.org/10.1186/s40360-017-0157-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2415-5-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047333342", 
          "https://doi.org/10.1186/1471-2415-5-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-02", 
    "datePublishedReg": "2018-06-02", 
    "description": "Background Clinical pharmacists\u2019 involvement has improved patients\u2019 care, by suggesting therapeutic optimizations. However, budget restrictions require a prioritization of these activities to focus resources on patients more at risk of medication errors. Objective The aim of our study was to identify variables influencing the formulation of pharmaceutical to improve medication review efficiency. Setting This study was conducted in medical wards of a 643-acute beds hospital in Paris, France. Methods All hospital medical prescriptions of all patients admitted within four medical wards (cardiology, rheumatology, neurology, vascular medicine) were analyzed. The study was conducted in each ward for 2 weeks, during 4 weeks. For each patient, variables prospectively collected were: age, gender, weight, emergency admission, number of high-alert medications and of total drugs prescribed, care unit, serum creatinine. Number of pharmaceutical interventions (PIs) and their type were reported. Main outcome measures Variables influencing the number of pharmaceutical interventions during medication review were identified using simple and multiple linear regressions. Results A total of 2328 drug prescriptions (303 patients, mean age 70.6\u00a0years-old) were analyzed. Mean number of hospital drug prescriptions was 7.9. A total of 318 PIs were formulated. Most frequent PIs were drug omission (n\u2009=\u200988, 27.7%), overdosing (n\u2009=\u200969, 21.7%), and underdosing (n\u2009=\u200951, 16.0%). Among variables studied, age, serum creatinine level, number of high-alert medications prescribed and total number of drugs prescribed were significantly associated with the formulation of pharmaceutical interventions (adjusted R2\u2009=\u20090.34). Conclusions This study identified variables (age, serum creatinine level, number of high-alert medication, number of prescribed drugs) that may help institutions/pharmacists target their reviews towards patients most likely to require pharmacist interventions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11096-018-0668-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044817", 
        "issn": [
          "2210-7703", 
          "2210-7711"
        ], 
        "name": "International Journal of Clinical Pharmacy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "high-alert medications", 
      "pharmaceutical interventions", 
      "medical wards", 
      "drug prescriptions", 
      "serum creatinine levels", 
      "drug omission", 
      "serum creatinine", 
      "pharmacist interventions", 
      "medication review", 
      "creatinine levels", 
      "clinical pharmacists", 
      "care unit", 
      "emergency admissions", 
      "MAIN OUTCOME", 
      "therapeutic optimization", 
      "patients", 
      "medication errors", 
      "total drug", 
      "medical prescription", 
      "wards", 
      "mean number", 
      "bed hospital", 
      "intervention", 
      "medications", 
      "prescription", 
      "pharmacists", 
      "weeks", 
      "drugs", 
      "age", 
      "identification of variables", 
      "total", 
      "multiple linear regression", 
      "total number", 
      "linear regression", 
      "creatinine", 
      "review", 
      "admission", 
      "hospital", 
      "study", 
      "care", 
      "outcomes", 
      "overdosing", 
      "risk", 
      "involvement", 
      "conclusion", 
      "gender", 
      "regression", 
      "aim", 
      "variables", 
      "number", 
      "levels", 
      "weight", 
      "activity", 
      "formulation of pharmaceuticals", 
      "restriction", 
      "review efficiency", 
      "omission", 
      "identification", 
      "units", 
      "types", 
      "results", 
      "pharmaceuticals", 
      "France", 
      "budget restrictions", 
      "prioritization", 
      "method", 
      "formulation", 
      "Paris", 
      "resources", 
      "error", 
      "efficiency", 
      "optimization", 
      "Background Clinical pharmacists", 
      "medication review efficiency", 
      "hospital medical prescriptions", 
      "hospital drug prescriptions", 
      "Most frequent PIs", 
      "frequent PIs", 
      "institutions/pharmacists"
    ], 
    "name": "Identification of variables influencing pharmaceutical interventions to improve medication review efficiency", 
    "pagination": "1175-1179", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104347838"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11096-018-0668-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29860706"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11096-018-0668-y", 
      "https://app.dimensions.ai/details/publication/pub.1104347838"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_789.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11096-018-0668-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11096-018-0668-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11096-018-0668-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11096-018-0668-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11096-018-0668-y'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      22 PREDICATES      126 URIs      115 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11096-018-0668-y schema:about N0a751cb5f1cc4662be692f5c4306e6e8
2 N1f8ac84a36a4478bacaf4542e104d33e
3 N21e03c6027cc4556adb8b1448e31da0e
4 N2527abcb325642ea85250ab1135ba02d
5 N2f681648647540b99c95f147971a234d
6 N5bdbe22bbf19463c847aa27e5577ae36
7 N8bce61a8eca447aa873c33c057b0b7f8
8 N9301b7fcd7974dcd8e9c4174a815af29
9 N95d7e62b9e434c33a3c1716af268015a
10 N9760fdc8dade4f2e90dedce596a891d4
11 N98491cff48174db4b9690e85add83cda
12 N9a078f9b272d4daeb012c232bdf9caf1
13 Naaee58f14c9b4be799f49483f58f73a0
14 Nbdd49338d0d243dca29e7467b1436107
15 Nc3211fdb09024bb5aee0827f86aa7375
16 Nd26b4d2ec5bf4d24b303943485ca89eb
17 Nd67c73788cc94953b5c46c8a3addaab6
18 Ne3f81d8603524459b2d23138423d1530
19 anzsrc-for:11
20 anzsrc-for:1103
21 schema:author Nb4c639be107545369801d7ac8338df2f
22 schema:citation sg:pub.10.1007/s11096-014-9991-0
23 sg:pub.10.1186/1471-2415-5-4
24 sg:pub.10.1186/s40360-017-0157-2
25 schema:datePublished 2018-06-02
26 schema:datePublishedReg 2018-06-02
27 schema:description Background Clinical pharmacists’ involvement has improved patients’ care, by suggesting therapeutic optimizations. However, budget restrictions require a prioritization of these activities to focus resources on patients more at risk of medication errors. Objective The aim of our study was to identify variables influencing the formulation of pharmaceutical to improve medication review efficiency. Setting This study was conducted in medical wards of a 643-acute beds hospital in Paris, France. Methods All hospital medical prescriptions of all patients admitted within four medical wards (cardiology, rheumatology, neurology, vascular medicine) were analyzed. The study was conducted in each ward for 2 weeks, during 4 weeks. For each patient, variables prospectively collected were: age, gender, weight, emergency admission, number of high-alert medications and of total drugs prescribed, care unit, serum creatinine. Number of pharmaceutical interventions (PIs) and their type were reported. Main outcome measures Variables influencing the number of pharmaceutical interventions during medication review were identified using simple and multiple linear regressions. Results A total of 2328 drug prescriptions (303 patients, mean age 70.6 years-old) were analyzed. Mean number of hospital drug prescriptions was 7.9. A total of 318 PIs were formulated. Most frequent PIs were drug omission (n = 88, 27.7%), overdosing (n = 69, 21.7%), and underdosing (n = 51, 16.0%). Among variables studied, age, serum creatinine level, number of high-alert medications prescribed and total number of drugs prescribed were significantly associated with the formulation of pharmaceutical interventions (adjusted R2 = 0.34). Conclusions This study identified variables (age, serum creatinine level, number of high-alert medication, number of prescribed drugs) that may help institutions/pharmacists target their reviews towards patients most likely to require pharmacist interventions.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Na193c09c8d834e2e8ee5f22451ca5468
32 Nd2e83961803f43f2857088a2bf02a0c5
33 sg:journal.1044817
34 schema:keywords Background Clinical pharmacists
35 France
36 MAIN OUTCOME
37 Most frequent PIs
38 Paris
39 activity
40 admission
41 age
42 aim
43 bed hospital
44 budget restrictions
45 care
46 care unit
47 clinical pharmacists
48 conclusion
49 creatinine
50 creatinine levels
51 drug omission
52 drug prescriptions
53 drugs
54 efficiency
55 emergency admissions
56 error
57 formulation
58 formulation of pharmaceuticals
59 frequent PIs
60 gender
61 high-alert medications
62 hospital
63 hospital drug prescriptions
64 hospital medical prescriptions
65 identification
66 identification of variables
67 institutions/pharmacists
68 intervention
69 involvement
70 levels
71 linear regression
72 mean number
73 medical prescription
74 medical wards
75 medication errors
76 medication review
77 medication review efficiency
78 medications
79 method
80 multiple linear regression
81 number
82 omission
83 optimization
84 outcomes
85 overdosing
86 patients
87 pharmaceutical interventions
88 pharmaceuticals
89 pharmacist interventions
90 pharmacists
91 prescription
92 prioritization
93 regression
94 resources
95 restriction
96 results
97 review
98 review efficiency
99 risk
100 serum creatinine
101 serum creatinine levels
102 study
103 therapeutic optimization
104 total
105 total drug
106 total number
107 types
108 units
109 variables
110 wards
111 weeks
112 weight
113 schema:name Identification of variables influencing pharmaceutical interventions to improve medication review efficiency
114 schema:pagination 1175-1179
115 schema:productId N2b3f8ca47c0e40cea1b0fe8d4c5a09b1
116 N89c7965ab51344489fe05f5357d6bef0
117 Nc815f59f54cc4f5c8b317dabf4f4f24b
118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104347838
119 https://doi.org/10.1007/s11096-018-0668-y
120 schema:sdDatePublished 2021-11-01T18:34
121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
122 schema:sdPublisher N8c5756a86807441c9e3d9988b5bb0837
123 schema:url https://doi.org/10.1007/s11096-018-0668-y
124 sgo:license sg:explorer/license/
125 sgo:sdDataset articles
126 rdf:type schema:ScholarlyArticle
127 N0a751cb5f1cc4662be692f5c4306e6e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Male
129 rdf:type schema:DefinedTerm
130 N0fb589fae7994d51a6a55827bf9efa85 schema:affiliation grid-institutes:grid.414363.7
131 schema:familyName Mouchel
132 schema:givenName Victorine
133 rdf:type schema:Person
134 N1f8ac84a36a4478bacaf4542e104d33e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Aged
136 rdf:type schema:DefinedTerm
137 N1fc1c844477d4ffea26134a4138836ba rdf:first sg:person.01116256712.35
138 rdf:rest N5e8800aca5b54ecb9ec30850d6ae00d2
139 N21e03c6027cc4556adb8b1448e31da0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Medication Therapy Management
141 rdf:type schema:DefinedTerm
142 N2527abcb325642ea85250ab1135ba02d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Adolescent
144 rdf:type schema:DefinedTerm
145 N2b3f8ca47c0e40cea1b0fe8d4c5a09b1 schema:name dimensions_id
146 schema:value pub.1104347838
147 rdf:type schema:PropertyValue
148 N2f681648647540b99c95f147971a234d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Female
150 rdf:type schema:DefinedTerm
151 N5bdbe22bbf19463c847aa27e5577ae36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name France
153 rdf:type schema:DefinedTerm
154 N5e8800aca5b54ecb9ec30850d6ae00d2 rdf:first sg:person.0743167661.40
155 rdf:rest N959ad476e0fd41729debd01acc197c28
156 N689321580b6f4977925660fc3eaa3983 rdf:first sg:person.014012175057.98
157 rdf:rest N1fc1c844477d4ffea26134a4138836ba
158 N89c7965ab51344489fe05f5357d6bef0 schema:name pubmed_id
159 schema:value 29860706
160 rdf:type schema:PropertyValue
161 N8bce61a8eca447aa873c33c057b0b7f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Aged, 80 and over
163 rdf:type schema:DefinedTerm
164 N8c5756a86807441c9e3d9988b5bb0837 schema:name Springer Nature - SN SciGraph project
165 rdf:type schema:Organization
166 N9301b7fcd7974dcd8e9c4174a815af29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Pharmacy Service, Hospital
168 rdf:type schema:DefinedTerm
169 N959ad476e0fd41729debd01acc197c28 rdf:first sg:person.01141133703.36
170 rdf:rest rdf:nil
171 N95d7e62b9e434c33a3c1716af268015a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Professional Role
173 rdf:type schema:DefinedTerm
174 N9760fdc8dade4f2e90dedce596a891d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Linear Models
176 rdf:type schema:DefinedTerm
177 N98491cff48174db4b9690e85add83cda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Middle Aged
179 rdf:type schema:DefinedTerm
180 N9a078f9b272d4daeb012c232bdf9caf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Young Adult
182 rdf:type schema:DefinedTerm
183 Na193c09c8d834e2e8ee5f22451ca5468 schema:volumeNumber 40
184 rdf:type schema:PublicationVolume
185 Naaee58f14c9b4be799f49483f58f73a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Pharmacists
187 rdf:type schema:DefinedTerm
188 Nb4c639be107545369801d7ac8338df2f rdf:first sg:person.011574377645.54
189 rdf:rest Nd69ed84c659344e785cba404844b5a34
190 Nbdd49338d0d243dca29e7467b1436107 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Humans
192 rdf:type schema:DefinedTerm
193 Nc3211fdb09024bb5aee0827f86aa7375 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Practice Patterns, Physicians'
195 rdf:type schema:DefinedTerm
196 Nc815f59f54cc4f5c8b317dabf4f4f24b schema:name doi
197 schema:value 10.1007/s11096-018-0668-y
198 rdf:type schema:PropertyValue
199 Nd26b4d2ec5bf4d24b303943485ca89eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Medication Errors
201 rdf:type schema:DefinedTerm
202 Nd2e83961803f43f2857088a2bf02a0c5 schema:issueNumber 5
203 rdf:type schema:PublicationIssue
204 Nd67c73788cc94953b5c46c8a3addaab6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Adult
206 rdf:type schema:DefinedTerm
207 Nd69ed84c659344e785cba404844b5a34 rdf:first N0fb589fae7994d51a6a55827bf9efa85
208 rdf:rest N689321580b6f4977925660fc3eaa3983
209 Ne3f81d8603524459b2d23138423d1530 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Prospective Studies
211 rdf:type schema:DefinedTerm
212 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
213 schema:name Medical and Health Sciences
214 rdf:type schema:DefinedTerm
215 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
216 schema:name Clinical Sciences
217 rdf:type schema:DefinedTerm
218 sg:journal.1044817 schema:issn 2210-7703
219 2210-7711
220 schema:name International Journal of Clinical Pharmacy
221 schema:publisher Springer Nature
222 rdf:type schema:Periodical
223 sg:person.01116256712.35 schema:affiliation grid-institutes:grid.414363.7
224 schema:familyName Beaussier
225 schema:givenName Hélène
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116256712.35
227 rdf:type schema:Person
228 sg:person.01141133703.36 schema:affiliation grid-institutes:grid.414363.7
229 schema:familyName Corny
230 schema:givenName Jennifer
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141133703.36
232 rdf:type schema:Person
233 sg:person.011574377645.54 schema:affiliation grid-institutes:grid.414363.7
234 schema:familyName Cornuault
235 schema:givenName Lauriane
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011574377645.54
237 rdf:type schema:Person
238 sg:person.014012175057.98 schema:affiliation grid-institutes:grid.414363.7
239 schema:familyName Phan Thi
240 schema:givenName Thuy-Tan
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014012175057.98
242 rdf:type schema:Person
243 sg:person.0743167661.40 schema:affiliation grid-institutes:grid.414363.7
244 schema:familyName Bézie
245 schema:givenName Yvonnick
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743167661.40
247 rdf:type schema:Person
248 sg:pub.10.1007/s11096-014-9991-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034173938
249 https://doi.org/10.1007/s11096-014-9991-0
250 rdf:type schema:CreativeWork
251 sg:pub.10.1186/1471-2415-5-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047333342
252 https://doi.org/10.1186/1471-2415-5-4
253 rdf:type schema:CreativeWork
254 sg:pub.10.1186/s40360-017-0157-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086327234
255 https://doi.org/10.1186/s40360-017-0157-2
256 rdf:type schema:CreativeWork
257 grid-institutes:grid.414363.7 schema:alternateName Groupe Hospitalier Paris Saint Joseph, Paris, Île-de-France, France
258 schema:name Groupe Hospitalier Paris Saint Joseph, Paris, Île-de-France, France
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...