A clinical prediction model for infusion-related reactions to rituximab in patients with B cell lymphomas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-31

AUTHORS

Tatsuya Hayama, Katsuhiro Miura, Akihiro Uchiike, Masaru Nakagawa, Daisuke Tsutsumi, Masashi Sakagami, Yoshikazu Yoshida, Masami Takei

ABSTRACT

Background Infusion-related reactions (IRRs) are a major adverse event of rituximab. Objective To develop a prediction model for IRRs to rituximab among patients with B cell non- Hodgkin’s lymphomas (B-NHL). Setting A 1000-bed university hospital in Tokyo. Methods Patients with B-NHL treated with rituximab at our institution from 2004 to 2014 were retrospectively analysed. Chills, fever, rash, nausea, asthenia, headache, cardiovascular symptoms, and respiratory symptoms of any grade, in association with rituximab infusion, were identified as IRRs. Risk factors for IRRs to rituximab found in the intergroup analysis were subsequently evaluated by using multivariate analysis. Main outcome measure Occurrence of IRRs to rituximab. Results A total of 140 patients with various types of B-NHL, including 74% with diffuse large Bcell lymphoma, were analysed. Among them, 55 and 85 patients were assigned to the IRR group and the non-IRR group, respectively. Indolent histological subtypes, bulky disease (>10 cm), B symptoms, higher serum soluble interleukin-2 receptor concentration, and bone marrow involvement were more common in the IRR group. The multivariate logistic regression analysis identified low-grade lymphomas [odds ratio (OR) 2.81, p = 0.017] and bulky disease (OR 2.52, p = 0.037) as independent risk factors for IRRs to rituximab. The incidence rates of IRRs to rituximab among patients with neither, one, or both of these risk factors were 26, 54, and 78%, respectively (χ2 = 16.4, p < 0.001). Conclusions A simple combination of histopathological subtype and bulkiness of disease could predict the risk of IRRs to rituximab among patients with B-NHL. More... »

PAGES

380-385

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11096-017-0429-3

DOI

http://dx.doi.org/10.1007/s11096-017-0429-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083400213

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28144804


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infusions, Intravenous", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphoma, B-Cell", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rituximab", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tumor Center, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.495549.0", 
          "name": [
            "Department of Pharmacy, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan", 
            "Tumor Center, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayama", 
        "givenName": "Tatsuya", 
        "id": "sg:person.015012577013.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012577013.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hematology and Rheumatology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260969.2", 
          "name": [
            "Tumor Center, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan", 
            "Department of Hematology and Rheumatology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miura", 
        "givenName": "Katsuhiro", 
        "id": "sg:person.01130761063.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130761063.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tumor Center, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.495549.0", 
          "name": [
            "Department of Pharmacy, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan", 
            "Tumor Center, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uchiike", 
        "givenName": "Akihiro", 
        "id": "sg:person.016405540013.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405540013.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hematology and Rheumatology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260969.2", 
          "name": [
            "Department of Hematology and Rheumatology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakagawa", 
        "givenName": "Masaru", 
        "id": "sg:person.01014220372.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014220372.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pharmacy, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.495549.0", 
          "name": [
            "Department of Pharmacy, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsutsumi", 
        "givenName": "Daisuke", 
        "id": "sg:person.010500047213.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010500047213.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hematology and Rheumatology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260969.2", 
          "name": [
            "Department of Hematology and Rheumatology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakagami", 
        "givenName": "Masashi", 
        "id": "sg:person.0755545406.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755545406.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pharmacy, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.495549.0", 
          "name": [
            "Department of Pharmacy, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshida", 
        "givenName": "Yoshikazu", 
        "id": "sg:person.015566262221.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015566262221.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hematology and Rheumatology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260969.2", 
          "name": [
            "Department of Hematology and Rheumatology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takei", 
        "givenName": "Masami", 
        "id": "sg:person.01307751612.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307751612.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00520-013-1788-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041634203", 
          "https://doi.org/10.1007/s00520-013-1788-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12185-011-0884-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051108491", 
          "https://doi.org/10.1007/s12185-011-0884-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00520-007-0329-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002510364", 
          "https://doi.org/10.1007/s00520-007-0329-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00520-012-1639-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029587610", 
          "https://doi.org/10.1007/s00520-012-1639-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00277-011-1363-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025252408", 
          "https://doi.org/10.1007/s00277-011-1363-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00520-008-0474-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008031484", 
          "https://doi.org/10.1007/s00520-008-0474-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-31", 
    "datePublishedReg": "2017-01-31", 
    "description": "Background Infusion-related reactions (IRRs) are a major adverse event of rituximab. Objective To develop a prediction model for IRRs to rituximab among patients with B cell non- Hodgkin\u2019s lymphomas (B-NHL). Setting A 1000-bed university hospital in Tokyo. Methods Patients with B-NHL treated with rituximab at our institution from 2004 to 2014 were retrospectively analysed. Chills, fever, rash, nausea, asthenia, headache, cardiovascular symptoms, and respiratory symptoms of any grade, in association with rituximab infusion, were identified as IRRs. Risk factors for IRRs to rituximab found in the intergroup analysis were subsequently evaluated by using multivariate analysis. Main outcome measure Occurrence of IRRs to rituximab. Results A total of 140 patients with various types of B-NHL, including 74% with diffuse large Bcell lymphoma, were analysed. Among them, 55 and 85 patients were assigned to the IRR group and the non-IRR group, respectively. Indolent histological subtypes, bulky disease (>10\u00a0cm), B symptoms, higher serum soluble interleukin-2 receptor concentration, and bone marrow involvement were more common in the IRR group. The multivariate logistic regression analysis identified low-grade lymphomas [odds ratio (OR) 2.81, p\u00a0=\u00a00.017] and bulky disease (OR 2.52, p\u00a0=\u00a00.037) as independent risk factors for IRRs to rituximab. The incidence rates of IRRs to rituximab among patients with neither, one, or both of these risk factors were 26, 54, and 78%, respectively (\u03c72\u00a0=\u00a016.4, p\u00a0<\u00a00.001). Conclusions A simple combination of histopathological subtype and bulkiness of disease could predict the risk of IRRs to rituximab among patients with B-NHL.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11096-017-0429-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044817", 
        "issn": [
          "2210-7703", 
          "2210-7711"
        ], 
        "name": "International Journal of Clinical Pharmacy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "keywords": [
      "infusion-related reactions", 
      "IRR group", 
      "risk factors", 
      "B-NHL", 
      "serum-soluble interleukin-2 receptor concentrations", 
      "soluble interleukin-2 receptor concentrations", 
      "diffuse large Bcell lymphoma", 
      "interleukin-2 receptor concentrations", 
      "multivariate logistic regression analysis", 
      "major adverse events", 
      "independent risk factor", 
      "bone marrow involvement", 
      "low-grade lymphoma", 
      "logistic regression analysis", 
      "B-cell lymphoma", 
      "clinical prediction model", 
      "rituximab infusion", 
      "bulky disease", 
      "B symptoms", 
      "Methods Patients", 
      "respiratory symptoms", 
      "marrow involvement", 
      "adverse events", 
      "cardiovascular symptoms", 
      "Hodgkin's lymphoma", 
      "histological subtypes", 
      "University Hospital", 
      "histopathological subtypes", 
      "incidence rate", 
      "rituximab", 
      "cell lymphoma", 
      "receptor concentration", 
      "patients", 
      "B cells", 
      "lymphoma", 
      "multivariate analysis", 
      "intergroup analysis", 
      "symptoms", 
      "disease", 
      "regression analysis", 
      "subtypes", 
      "group", 
      "nausea", 
      "rash", 
      "asthenia", 
      "headache", 
      "fever", 
      "hospital", 
      "infusion", 
      "factors", 
      "chills", 
      "total", 
      "risk", 
      "association", 
      "involvement", 
      "conclusion", 
      "cells", 
      "grade", 
      "prediction model", 
      "analysis", 
      "occurrence", 
      "rate", 
      "events", 
      "concentration", 
      "combination", 
      "institutions", 
      "reaction", 
      "types", 
      "model", 
      "results", 
      "Tokyo", 
      "simple combination", 
      "bulkiness"
    ], 
    "name": "A clinical prediction model for infusion-related reactions to rituximab in patients with B cell lymphomas", 
    "pagination": "380-385", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083400213"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11096-017-0429-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28144804"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11096-017-0429-3", 
      "https://app.dimensions.ai/details/publication/pub.1083400213"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_729.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11096-017-0429-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11096-017-0429-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11096-017-0429-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11096-017-0429-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11096-017-0429-3'


 

This table displays all metadata directly associated to this object as RDF triples.

269 TRIPLES      21 PREDICATES      118 URIs      104 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11096-017-0429-3 schema:about N003929a3dc774b74b085d32ec660cde1
2 N120f6859e92646848431c2a2bb2ee8c8
3 N210c7eec06924f408e788dd39f852f44
4 N3f2421405ea5412ab8e38ebc8a27a10d
5 N5d28633bfa944e95b3512e72a0ca9f70
6 N74e92b5afceb4b709dfc874bf7fb3517
7 N7d34e26efe564b7594a95df98877be83
8 N88c1511da34d41cb96b7b10ed186fdb6
9 Naa0d630e92b74468b0a5ee0d8639a425
10 Nd00bd83d2db34b6abd8fa3ffb279423c
11 Ndaf09692064045b89c59af2c0750ceb5
12 Ne5304fdee32b4b0c9524b77b85943389
13 Nee1f1597f37d4c5f8a22538bc7b989b3
14 Nef8dfa6652614822b4896fbdad962615
15 anzsrc-for:11
16 anzsrc-for:1102
17 schema:author Nf9f321f861a64b7ba5120b66b50c5974
18 schema:citation sg:pub.10.1007/s00277-011-1363-4
19 sg:pub.10.1007/s00520-007-0329-5
20 sg:pub.10.1007/s00520-008-0474-5
21 sg:pub.10.1007/s00520-012-1639-9
22 sg:pub.10.1007/s00520-013-1788-5
23 sg:pub.10.1007/s12185-011-0884-x
24 schema:datePublished 2017-01-31
25 schema:datePublishedReg 2017-01-31
26 schema:description Background Infusion-related reactions (IRRs) are a major adverse event of rituximab. Objective To develop a prediction model for IRRs to rituximab among patients with B cell non- Hodgkin’s lymphomas (B-NHL). Setting A 1000-bed university hospital in Tokyo. Methods Patients with B-NHL treated with rituximab at our institution from 2004 to 2014 were retrospectively analysed. Chills, fever, rash, nausea, asthenia, headache, cardiovascular symptoms, and respiratory symptoms of any grade, in association with rituximab infusion, were identified as IRRs. Risk factors for IRRs to rituximab found in the intergroup analysis were subsequently evaluated by using multivariate analysis. Main outcome measure Occurrence of IRRs to rituximab. Results A total of 140 patients with various types of B-NHL, including 74% with diffuse large Bcell lymphoma, were analysed. Among them, 55 and 85 patients were assigned to the IRR group and the non-IRR group, respectively. Indolent histological subtypes, bulky disease (>10 cm), B symptoms, higher serum soluble interleukin-2 receptor concentration, and bone marrow involvement were more common in the IRR group. The multivariate logistic regression analysis identified low-grade lymphomas [odds ratio (OR) 2.81, p = 0.017] and bulky disease (OR 2.52, p = 0.037) as independent risk factors for IRRs to rituximab. The incidence rates of IRRs to rituximab among patients with neither, one, or both of these risk factors were 26, 54, and 78%, respectively (χ2 = 16.4, p < 0.001). Conclusions A simple combination of histopathological subtype and bulkiness of disease could predict the risk of IRRs to rituximab among patients with B-NHL.
27 schema:genre article
28 schema:isAccessibleForFree false
29 schema:isPartOf Na9e1baaca5ab44b3bd190368c31f1728
30 Nfa75f2243c774cd6a084d60dd52574de
31 sg:journal.1044817
32 schema:keywords B cells
33 B symptoms
34 B-NHL
35 B-cell lymphoma
36 Hodgkin's lymphoma
37 IRR group
38 Methods Patients
39 Tokyo
40 University Hospital
41 adverse events
42 analysis
43 association
44 asthenia
45 bone marrow involvement
46 bulkiness
47 bulky disease
48 cardiovascular symptoms
49 cell lymphoma
50 cells
51 chills
52 clinical prediction model
53 combination
54 concentration
55 conclusion
56 diffuse large Bcell lymphoma
57 disease
58 events
59 factors
60 fever
61 grade
62 group
63 headache
64 histological subtypes
65 histopathological subtypes
66 hospital
67 incidence rate
68 independent risk factor
69 infusion
70 infusion-related reactions
71 institutions
72 intergroup analysis
73 interleukin-2 receptor concentrations
74 involvement
75 logistic regression analysis
76 low-grade lymphoma
77 lymphoma
78 major adverse events
79 marrow involvement
80 model
81 multivariate analysis
82 multivariate logistic regression analysis
83 nausea
84 occurrence
85 patients
86 prediction model
87 rash
88 rate
89 reaction
90 receptor concentration
91 regression analysis
92 respiratory symptoms
93 results
94 risk
95 risk factors
96 rituximab
97 rituximab infusion
98 serum-soluble interleukin-2 receptor concentrations
99 simple combination
100 soluble interleukin-2 receptor concentrations
101 subtypes
102 symptoms
103 total
104 types
105 schema:name A clinical prediction model for infusion-related reactions to rituximab in patients with B cell lymphomas
106 schema:pagination 380-385
107 schema:productId N2037bb7a3e194e4ea6c6d4be06ec0ffd
108 N8c858fc1f3aa4ca98d99e81f4d2585fd
109 N9a72cdb81cb24dde80674a37c40591af
110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083400213
111 https://doi.org/10.1007/s11096-017-0429-3
112 schema:sdDatePublished 2022-11-24T21:02
113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
114 schema:sdPublisher N749ac3464d88402d929a95917f811fea
115 schema:url https://doi.org/10.1007/s11096-017-0429-3
116 sgo:license sg:explorer/license/
117 sgo:sdDataset articles
118 rdf:type schema:ScholarlyArticle
119 N003929a3dc774b74b085d32ec660cde1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Case-Control Studies
121 rdf:type schema:DefinedTerm
122 N120f6859e92646848431c2a2bb2ee8c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Adult
124 rdf:type schema:DefinedTerm
125 N2037bb7a3e194e4ea6c6d4be06ec0ffd schema:name doi
126 schema:value 10.1007/s11096-017-0429-3
127 rdf:type schema:PropertyValue
128 N210c7eec06924f408e788dd39f852f44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Aged
130 rdf:type schema:DefinedTerm
131 N3f2421405ea5412ab8e38ebc8a27a10d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Models, Statistical
133 rdf:type schema:DefinedTerm
134 N59593606dfb14c3d89ac8299bdd11889 rdf:first sg:person.01014220372.00
135 rdf:rest N894de7ae963642abb02fc62d67017f86
136 N5d28633bfa944e95b3512e72a0ca9f70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Rituximab
138 rdf:type schema:DefinedTerm
139 N5f72ce20ce49498ab52f3fca10f0d806 rdf:first sg:person.016405540013.13
140 rdf:rest N59593606dfb14c3d89ac8299bdd11889
141 N749ac3464d88402d929a95917f811fea schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 N74e92b5afceb4b709dfc874bf7fb3517 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Risk Factors
145 rdf:type schema:DefinedTerm
146 N7d34e26efe564b7594a95df98877be83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Humans
148 rdf:type schema:DefinedTerm
149 N84e2c94034904dc1b9691e1aa07cb151 rdf:first sg:person.0755545406.48
150 rdf:rest Ne5ca70c6729f435b86005e11a495344e
151 N88c1511da34d41cb96b7b10ed186fdb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Middle Aged
153 rdf:type schema:DefinedTerm
154 N894de7ae963642abb02fc62d67017f86 rdf:first sg:person.010500047213.01
155 rdf:rest N84e2c94034904dc1b9691e1aa07cb151
156 N8c858fc1f3aa4ca98d99e81f4d2585fd schema:name pubmed_id
157 schema:value 28144804
158 rdf:type schema:PropertyValue
159 N9a72cdb81cb24dde80674a37c40591af schema:name dimensions_id
160 schema:value pub.1083400213
161 rdf:type schema:PropertyValue
162 Na9e1baaca5ab44b3bd190368c31f1728 schema:issueNumber 2
163 rdf:type schema:PublicationIssue
164 Naa0d630e92b74468b0a5ee0d8639a425 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Female
166 rdf:type schema:DefinedTerm
167 Nd00bd83d2db34b6abd8fa3ffb279423c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Infusions, Intravenous
169 rdf:type schema:DefinedTerm
170 Nd1b466c0cc454138a57758a4febcb6ad rdf:first sg:person.01307751612.93
171 rdf:rest rdf:nil
172 Ndaf09692064045b89c59af2c0750ceb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Male
174 rdf:type schema:DefinedTerm
175 Ne5304fdee32b4b0c9524b77b85943389 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Incidence
177 rdf:type schema:DefinedTerm
178 Ne5ca70c6729f435b86005e11a495344e rdf:first sg:person.015566262221.45
179 rdf:rest Nd1b466c0cc454138a57758a4febcb6ad
180 Nee1f1597f37d4c5f8a22538bc7b989b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Lymphoma, B-Cell
182 rdf:type schema:DefinedTerm
183 Nef8dfa6652614822b4896fbdad962615 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Retrospective Studies
185 rdf:type schema:DefinedTerm
186 Nf9f321f861a64b7ba5120b66b50c5974 rdf:first sg:person.015012577013.75
187 rdf:rest Nfa1556eaa27444789d4694333f6cf3c1
188 Nfa1556eaa27444789d4694333f6cf3c1 rdf:first sg:person.01130761063.97
189 rdf:rest N5f72ce20ce49498ab52f3fca10f0d806
190 Nfa75f2243c774cd6a084d60dd52574de schema:volumeNumber 39
191 rdf:type schema:PublicationVolume
192 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
193 schema:name Medical and Health Sciences
194 rdf:type schema:DefinedTerm
195 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
196 schema:name Cardiorespiratory Medicine and Haematology
197 rdf:type schema:DefinedTerm
198 sg:journal.1044817 schema:issn 2210-7703
199 2210-7711
200 schema:name International Journal of Clinical Pharmacy
201 schema:publisher Springer Nature
202 rdf:type schema:Periodical
203 sg:person.01014220372.00 schema:affiliation grid-institutes:grid.260969.2
204 schema:familyName Nakagawa
205 schema:givenName Masaru
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014220372.00
207 rdf:type schema:Person
208 sg:person.010500047213.01 schema:affiliation grid-institutes:grid.495549.0
209 schema:familyName Tsutsumi
210 schema:givenName Daisuke
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010500047213.01
212 rdf:type schema:Person
213 sg:person.01130761063.97 schema:affiliation grid-institutes:grid.260969.2
214 schema:familyName Miura
215 schema:givenName Katsuhiro
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130761063.97
217 rdf:type schema:Person
218 sg:person.01307751612.93 schema:affiliation grid-institutes:grid.260969.2
219 schema:familyName Takei
220 schema:givenName Masami
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307751612.93
222 rdf:type schema:Person
223 sg:person.015012577013.75 schema:affiliation grid-institutes:grid.495549.0
224 schema:familyName Hayama
225 schema:givenName Tatsuya
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012577013.75
227 rdf:type schema:Person
228 sg:person.015566262221.45 schema:affiliation grid-institutes:grid.495549.0
229 schema:familyName Yoshida
230 schema:givenName Yoshikazu
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015566262221.45
232 rdf:type schema:Person
233 sg:person.016405540013.13 schema:affiliation grid-institutes:grid.495549.0
234 schema:familyName Uchiike
235 schema:givenName Akihiro
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405540013.13
237 rdf:type schema:Person
238 sg:person.0755545406.48 schema:affiliation grid-institutes:grid.260969.2
239 schema:familyName Sakagami
240 schema:givenName Masashi
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755545406.48
242 rdf:type schema:Person
243 sg:pub.10.1007/s00277-011-1363-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025252408
244 https://doi.org/10.1007/s00277-011-1363-4
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/s00520-007-0329-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002510364
247 https://doi.org/10.1007/s00520-007-0329-5
248 rdf:type schema:CreativeWork
249 sg:pub.10.1007/s00520-008-0474-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008031484
250 https://doi.org/10.1007/s00520-008-0474-5
251 rdf:type schema:CreativeWork
252 sg:pub.10.1007/s00520-012-1639-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029587610
253 https://doi.org/10.1007/s00520-012-1639-9
254 rdf:type schema:CreativeWork
255 sg:pub.10.1007/s00520-013-1788-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041634203
256 https://doi.org/10.1007/s00520-013-1788-5
257 rdf:type schema:CreativeWork
258 sg:pub.10.1007/s12185-011-0884-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051108491
259 https://doi.org/10.1007/s12185-011-0884-x
260 rdf:type schema:CreativeWork
261 grid-institutes:grid.260969.2 schema:alternateName Department of Hematology and Rheumatology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan
262 schema:name Department of Hematology and Rheumatology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan
263 Tumor Center, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan
264 rdf:type schema:Organization
265 grid-institutes:grid.495549.0 schema:alternateName Department of Pharmacy, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan
266 Tumor Center, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan
267 schema:name Department of Pharmacy, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan
268 Tumor Center, Nihon University Itabashi Hospital, 30-1 Oyaguchikamicho, Itabashi Ward, 173-8610, Tokyo, Japan
269 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...