Biomimetic Hydroxyapatite a Potential Universal Nanocarrier for Cellular Internalization & Drug Delivery View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Ashu Srivastav, Balasaheb Chandanshive, Prajakta Dandekar, Deepa Khushalani, Ratnesh Jain

ABSTRACT

PURPOSE: Functional biomaterials can be used as drug loading devices, components for tissue engineering or as biological probes. As such, the design, synthesis and evaluation of a variety of local-drug delivery structures has been undertaken over the past few decades with the ultimate aim of providing materials that can encapsulate a diverse array of drugs (in terms of their sizes, chemical compositions and chemical natures (i.e. hydrophilic/hydrophobic). METHODS: Presented here is the evaluation of specifically hollow 1D structures consisting of nanotubes (NTs) of HAp and their efficacy for cellular internalization using two distinguished anti-cancer model drugs: Paclitaxel (hydrophobic) and Doxorubicin hydrochloride (hydrophilic). RESULTS: Importantly, it has been observed through this work that HAp NTs consistently showed not only higher drug loading capacity as compared to HAp nanospheres (NSs) but also had better efficacy with respect to cell internalization/encapsulation. The highly porous structure, with large surface area of nanotube morphology, gave the advantage of targeted delivery due to its high drug loading and retention capacity. This was done using the very simple techniques of physical adsorption to load the drug/dye molecules and therefore this can be universally applied to a diverse array of molecules. CONCLUSIONS: Our synthesized nanocarrier can be widely employed in biomedical applications due to its bio-compatible, bio-active and biodegradable properties and as such can be considered to be a universal carrier. Graphical Abstract Schematic representation for a comparative study of hydroxyapatite (hollow nanotubes vs solid nanospheres) with variety of drug/ dye molecules. More... »

PAGES

60

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11095-019-2594-7

DOI

http://dx.doi.org/10.1007/s11095-019-2594-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112606990

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30847584


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adsorption", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biocompatible Materials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomimetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Doxorubicin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Carriers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Delivery Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Durapatite", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HeLa Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrophobic and Hydrophilic Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanospheres", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotubes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Porosity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Mumbai", 
          "id": "https://www.grid.ac/institutes/grid.44871.3e", 
          "name": [
            "Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), 400019, Mumbai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivastav", 
        "givenName": "Ashu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tata Institute of Fundamental Research", 
          "id": "https://www.grid.ac/institutes/grid.22401.35", 
          "name": [
            "Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, 400005, Mumbai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chandanshive", 
        "givenName": "Balasaheb", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Mumbai", 
          "id": "https://www.grid.ac/institutes/grid.44871.3e", 
          "name": [
            "Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Matunga (E), 400019, Mumbai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dandekar", 
        "givenName": "Prajakta", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tata Institute of Fundamental Research", 
          "id": "https://www.grid.ac/institutes/grid.22401.35", 
          "name": [
            "Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, 400005, Mumbai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khushalani", 
        "givenName": "Deepa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Mumbai", 
          "id": "https://www.grid.ac/institutes/grid.44871.3e", 
          "name": [
            "Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), 400019, Mumbai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Ratnesh", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12274-008-8021-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002422952", 
          "https://doi.org/10.1007/s12274-008-8021-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0809154105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002857214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004692245", 
          "https://doi.org/10.1038/nrd2591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004692245", 
          "https://doi.org/10.1038/nrd2591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cs15327k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007387497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msec.2013.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013488060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1748-0132(07)70084-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014382756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/s12248-015-9780-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014606546", 
          "https://doi.org/10.1208/s12248-015-9780-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b800389k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016198611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0jm00145g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018648575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0jm00145g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018648575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm0011559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020207024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm0011559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020207024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/17425247.2014.950564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021411606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-chembioeng-073009-100847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022368858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addr.2012.09.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023571271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn800072t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028058184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1734-1140(12)70901-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031170786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031651380", 
          "https://doi.org/10.1038/nbt876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031651380", 
          "https://doi.org/10.1038/nbt876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6py00676k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034464698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-409x(02)00228-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035291981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-409x(02)00228-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035291981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(03)02903-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038206642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040302077", 
          "https://doi.org/10.1038/nmat2608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040302077", 
          "https://doi.org/10.1038/nmat2608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tips.2009.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041486814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addr.2016.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046673080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2014.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046741366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-med-040210-162544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046918538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1185547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046994054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1185547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046994054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000143302.48223.7e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047578208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000143302.48223.7e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047578208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1095833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048204575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-3659(00)00339-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048308418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051411109", 
          "https://doi.org/10.1038/nmat2398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-0286(02)00117-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052085756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-45433-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052458173", 
          "https://doi.org/10.1007/978-3-319-45433-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemrev.5b00046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055085134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl403949h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2106/00004623-200300003-00013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068895395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/ijn.s121881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083421535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41570-017-0063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091102920", 
          "https://doi.org/10.1038/s41570-017-0063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adbi.201800241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110030063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adbi.201800241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110030063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/advs.201801688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111401721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/advs.201801688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111401721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/advs.201801688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111401721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/advs.201801688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111401721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/advs.201801688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111401721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/advs.201801688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111401721"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "PURPOSE: Functional biomaterials can be used as drug loading devices, components for tissue engineering or as biological probes. As such, the design, synthesis and evaluation of a variety of local-drug delivery structures has been undertaken over the past few decades with the ultimate aim of providing materials that can encapsulate a diverse array of drugs (in terms of their sizes, chemical compositions and chemical natures (i.e. hydrophilic/hydrophobic).\nMETHODS: Presented here is the evaluation of specifically hollow 1D structures consisting of nanotubes (NTs) of HAp and their efficacy for cellular internalization using two distinguished anti-cancer model drugs: Paclitaxel (hydrophobic) and Doxorubicin hydrochloride (hydrophilic).\nRESULTS: Importantly, it has been observed through this work that HAp NTs consistently showed not only higher drug loading capacity as compared to HAp nanospheres (NSs) but also had better efficacy with respect to cell internalization/encapsulation. The highly porous structure, with large surface area of nanotube morphology, gave the advantage of targeted delivery due to its high drug loading and retention capacity. This was done using the very simple techniques of physical adsorption to load the drug/dye molecules and therefore this can be universally applied to a diverse array of molecules.\nCONCLUSIONS: Our synthesized nanocarrier can be widely employed in biomedical applications due to its bio-compatible, bio-active and biodegradable properties and as such can be considered to be a universal carrier. Graphical Abstract Schematic representation for a comparative study of hydroxyapatite (hollow nanotubes vs solid nanospheres) with variety of drug/ dye molecules.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11095-019-2594-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094644", 
        "issn": [
          "0724-8741", 
          "1573-904X"
        ], 
        "name": "Pharmaceutical Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Biomimetic Hydroxyapatite a Potential Universal Nanocarrier for Cellular Internalization & Drug Delivery", 
    "pagination": "60", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bf7da4048c24f4db9dedda692536f1a82f1473132dc8194fb57115bec7d4ef49"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30847584"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8406521"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11095-019-2594-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112606990"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11095-019-2594-7", 
      "https://app.dimensions.ai/details/publication/pub.1112606990"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78974_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11095-019-2594-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11095-019-2594-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11095-019-2594-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11095-019-2594-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11095-019-2594-7'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      21 PREDICATES      83 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11095-019-2594-7 schema:about N097fcd1565614029b646237b4745cb39
2 N31dd4e3270db4077a3abf87070f5c4f6
3 N3cedbec39d6b4d3ea7a9962897359e95
4 N4cb47c47f29c4844b51292352a8e54ec
5 N62876653cde14726b836dac3b637892a
6 N68856b1d5c1848a6a1b5dcaa07d6bc0e
7 N86cfd80d0ed3458a9086cffd984ebeda
8 N9da981609130411e8ec000bd8f602b5f
9 Na458796ffcf44d988169918ad27e2efe
10 Na901d2a7edf748f1a3f26e281ef138f5
11 Nb83ad3bc5b10474d82ce3c69b25f2224
12 Nc99a35d8c6a1408cadeee9f1785c8d58
13 Nce155c1796504990b36ffd51bf19a794
14 Nd6f1ddaf40f94b89bb40cdee16a56c4b
15 Nf092200d59824df8b0d5cd6b5093d0fd
16 Nf49e6eacb5e0425ead808001dcf48ab1
17 anzsrc-for:03
18 anzsrc-for:0306
19 schema:author Nd41e294ee56a43728a7fe0e4c9e77ecf
20 schema:citation sg:pub.10.1007/978-3-319-45433-7_4
21 sg:pub.10.1007/s12274-008-8021-8
22 sg:pub.10.1038/nbt876
23 sg:pub.10.1038/nmat2398
24 sg:pub.10.1038/nmat2608
25 sg:pub.10.1038/nrd2591
26 sg:pub.10.1038/s41570-017-0063
27 sg:pub.10.1208/s12248-015-9780-2
28 https://doi.org/10.1002/adbi.201800241
29 https://doi.org/10.1002/advs.201801688
30 https://doi.org/10.1016/j.addr.2012.09.030
31 https://doi.org/10.1016/j.addr.2016.03.001
32 https://doi.org/10.1016/j.ces.2014.10.022
33 https://doi.org/10.1016/j.msec.2013.03.022
34 https://doi.org/10.1016/j.tips.2009.08.004
35 https://doi.org/10.1016/s0168-3659(00)00339-4
36 https://doi.org/10.1016/s0169-409x(02)00228-4
37 https://doi.org/10.1016/s1359-0286(02)00117-1
38 https://doi.org/10.1016/s1359-6446(03)02903-9
39 https://doi.org/10.1016/s1734-1140(12)70901-5
40 https://doi.org/10.1016/s1748-0132(07)70084-1
41 https://doi.org/10.1021/acs.chemrev.5b00046
42 https://doi.org/10.1021/cm0011559
43 https://doi.org/10.1021/nl403949h
44 https://doi.org/10.1021/nn800072t
45 https://doi.org/10.1039/b800389k
46 https://doi.org/10.1039/c0jm00145g
47 https://doi.org/10.1039/c2cs15327k
48 https://doi.org/10.1039/c6py00676k
49 https://doi.org/10.1073/pnas.0809154105
50 https://doi.org/10.1097/01.sla.0000143302.48223.7e
51 https://doi.org/10.1126/science.1095833
52 https://doi.org/10.1126/science.1185547
53 https://doi.org/10.1146/annurev-chembioeng-073009-100847
54 https://doi.org/10.1146/annurev-med-040210-162544
55 https://doi.org/10.1517/17425247.2014.950564
56 https://doi.org/10.2106/00004623-200300003-00013
57 https://doi.org/10.2147/ijn.s121881
58 schema:datePublished 2019-04
59 schema:datePublishedReg 2019-04-01
60 schema:description PURPOSE: Functional biomaterials can be used as drug loading devices, components for tissue engineering or as biological probes. As such, the design, synthesis and evaluation of a variety of local-drug delivery structures has been undertaken over the past few decades with the ultimate aim of providing materials that can encapsulate a diverse array of drugs (in terms of their sizes, chemical compositions and chemical natures (i.e. hydrophilic/hydrophobic). METHODS: Presented here is the evaluation of specifically hollow 1D structures consisting of nanotubes (NTs) of HAp and their efficacy for cellular internalization using two distinguished anti-cancer model drugs: Paclitaxel (hydrophobic) and Doxorubicin hydrochloride (hydrophilic). RESULTS: Importantly, it has been observed through this work that HAp NTs consistently showed not only higher drug loading capacity as compared to HAp nanospheres (NSs) but also had better efficacy with respect to cell internalization/encapsulation. The highly porous structure, with large surface area of nanotube morphology, gave the advantage of targeted delivery due to its high drug loading and retention capacity. This was done using the very simple techniques of physical adsorption to load the drug/dye molecules and therefore this can be universally applied to a diverse array of molecules. CONCLUSIONS: Our synthesized nanocarrier can be widely employed in biomedical applications due to its bio-compatible, bio-active and biodegradable properties and as such can be considered to be a universal carrier. Graphical Abstract Schematic representation for a comparative study of hydroxyapatite (hollow nanotubes vs solid nanospheres) with variety of drug/ dye molecules.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree false
64 schema:isPartOf N1c040a4326de4e63b4056bb964bf4b17
65 N20fce4fec88d430f82a3447c1c91f417
66 sg:journal.1094644
67 schema:name Biomimetic Hydroxyapatite a Potential Universal Nanocarrier for Cellular Internalization & Drug Delivery
68 schema:pagination 60
69 schema:productId N0102ecfc4077407a861802d4c2e7fd0e
70 N3869fa97f014448abffab8cac8217bc7
71 N5a4b1f395b9c4977969044074960320c
72 N7b29c76f5e1243d892b6fa4c621268b9
73 N8c4b68784e414487a2f7204cb8a3eb76
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112606990
75 https://doi.org/10.1007/s11095-019-2594-7
76 schema:sdDatePublished 2019-04-11T13:21
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N8485b8c758364a14b282b316804c51dc
79 schema:url https://link.springer.com/10.1007%2Fs11095-019-2594-7
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N0102ecfc4077407a861802d4c2e7fd0e schema:name doi
84 schema:value 10.1007/s11095-019-2594-7
85 rdf:type schema:PropertyValue
86 N097fcd1565614029b646237b4745cb39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Cells, Cultured
88 rdf:type schema:DefinedTerm
89 N0a5cdd28b7574feb8d48f3bce4e410d2 rdf:first N5b03d18784914eb7b4ad8c8b6ca8d936
90 rdf:rest Nf47f7d47caed4fbdb99c148ed2d5aa14
91 N14a153f36393475e92eab7f07b07d1b8 rdf:first N2a7d64dce3984f1a9a966a465bb3c4a5
92 rdf:rest N0a5cdd28b7574feb8d48f3bce4e410d2
93 N1c040a4326de4e63b4056bb964bf4b17 schema:volumeNumber 36
94 rdf:type schema:PublicationVolume
95 N20fce4fec88d430f82a3447c1c91f417 schema:issueNumber 4
96 rdf:type schema:PublicationIssue
97 N2a7d64dce3984f1a9a966a465bb3c4a5 schema:affiliation https://www.grid.ac/institutes/grid.44871.3e
98 schema:familyName Dandekar
99 schema:givenName Prajakta
100 rdf:type schema:Person
101 N31dd4e3270db4077a3abf87070f5c4f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Durapatite
103 rdf:type schema:DefinedTerm
104 N3869fa97f014448abffab8cac8217bc7 schema:name readcube_id
105 schema:value bf7da4048c24f4db9dedda692536f1a82f1473132dc8194fb57115bec7d4ef49
106 rdf:type schema:PropertyValue
107 N387e8b33bc9b46aa8473c9d2122a585f rdf:first Nb065376bcb5d4034b0997d9209e7e456
108 rdf:rest N14a153f36393475e92eab7f07b07d1b8
109 N3cedbec39d6b4d3ea7a9962897359e95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Porosity
111 rdf:type schema:DefinedTerm
112 N4cb47c47f29c4844b51292352a8e54ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Nanotubes
114 rdf:type schema:DefinedTerm
115 N5a4b1f395b9c4977969044074960320c schema:name dimensions_id
116 schema:value pub.1112606990
117 rdf:type schema:PropertyValue
118 N5b03d18784914eb7b4ad8c8b6ca8d936 schema:affiliation https://www.grid.ac/institutes/grid.22401.35
119 schema:familyName Khushalani
120 schema:givenName Deepa
121 rdf:type schema:Person
122 N62876653cde14726b836dac3b637892a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name HeLa Cells
124 rdf:type schema:DefinedTerm
125 N68856b1d5c1848a6a1b5dcaa07d6bc0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Humans
127 rdf:type schema:DefinedTerm
128 N7b29c76f5e1243d892b6fa4c621268b9 schema:name nlm_unique_id
129 schema:value 8406521
130 rdf:type schema:PropertyValue
131 N8485b8c758364a14b282b316804c51dc schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 N86cfd80d0ed3458a9086cffd984ebeda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Hydrophobic and Hydrophilic Interactions
135 rdf:type schema:DefinedTerm
136 N8c4b68784e414487a2f7204cb8a3eb76 schema:name pubmed_id
137 schema:value 30847584
138 rdf:type schema:PropertyValue
139 N9da981609130411e8ec000bd8f602b5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Antineoplastic Agents
141 rdf:type schema:DefinedTerm
142 N9df745880995440ea3c3cb24c1d34055 schema:affiliation https://www.grid.ac/institutes/grid.44871.3e
143 schema:familyName Jain
144 schema:givenName Ratnesh
145 rdf:type schema:Person
146 Na458796ffcf44d988169918ad27e2efe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Drug Delivery Systems
148 rdf:type schema:DefinedTerm
149 Na901d2a7edf748f1a3f26e281ef138f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Nanospheres
151 rdf:type schema:DefinedTerm
152 Nb065376bcb5d4034b0997d9209e7e456 schema:affiliation https://www.grid.ac/institutes/grid.22401.35
153 schema:familyName Chandanshive
154 schema:givenName Balasaheb
155 rdf:type schema:Person
156 Nb83ad3bc5b10474d82ce3c69b25f2224 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Cell Line, Tumor
158 rdf:type schema:DefinedTerm
159 Nc99a35d8c6a1408cadeee9f1785c8d58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Drug Carriers
161 rdf:type schema:DefinedTerm
162 Nce155c1796504990b36ffd51bf19a794 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Adsorption
164 rdf:type schema:DefinedTerm
165 Nd41e294ee56a43728a7fe0e4c9e77ecf rdf:first Ndaf176106c314ea29383b88d96375eb4
166 rdf:rest N387e8b33bc9b46aa8473c9d2122a585f
167 Nd6f1ddaf40f94b89bb40cdee16a56c4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Biocompatible Materials
169 rdf:type schema:DefinedTerm
170 Ndaf176106c314ea29383b88d96375eb4 schema:affiliation https://www.grid.ac/institutes/grid.44871.3e
171 schema:familyName Srivastav
172 schema:givenName Ashu
173 rdf:type schema:Person
174 Nf092200d59824df8b0d5cd6b5093d0fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Doxorubicin
176 rdf:type schema:DefinedTerm
177 Nf47f7d47caed4fbdb99c148ed2d5aa14 rdf:first N9df745880995440ea3c3cb24c1d34055
178 rdf:rest rdf:nil
179 Nf49e6eacb5e0425ead808001dcf48ab1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Biomimetics
181 rdf:type schema:DefinedTerm
182 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
183 schema:name Chemical Sciences
184 rdf:type schema:DefinedTerm
185 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
186 schema:name Physical Chemistry (incl. Structural)
187 rdf:type schema:DefinedTerm
188 sg:journal.1094644 schema:issn 0724-8741
189 1573-904X
190 schema:name Pharmaceutical Research
191 rdf:type schema:Periodical
192 sg:pub.10.1007/978-3-319-45433-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052458173
193 https://doi.org/10.1007/978-3-319-45433-7_4
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s12274-008-8021-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002422952
196 https://doi.org/10.1007/s12274-008-8021-8
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nbt876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031651380
199 https://doi.org/10.1038/nbt876
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nmat2398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051411109
202 https://doi.org/10.1038/nmat2398
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nmat2608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040302077
205 https://doi.org/10.1038/nmat2608
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nrd2591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004692245
208 https://doi.org/10.1038/nrd2591
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/s41570-017-0063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091102920
211 https://doi.org/10.1038/s41570-017-0063
212 rdf:type schema:CreativeWork
213 sg:pub.10.1208/s12248-015-9780-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014606546
214 https://doi.org/10.1208/s12248-015-9780-2
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1002/adbi.201800241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110030063
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/advs.201801688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111401721
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.addr.2012.09.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023571271
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.addr.2016.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046673080
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.ces.2014.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046741366
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.msec.2013.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013488060
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.tips.2009.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041486814
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s0168-3659(00)00339-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048308418
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/s0169-409x(02)00228-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035291981
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/s1359-0286(02)00117-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052085756
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/s1359-6446(03)02903-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038206642
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/s1734-1140(12)70901-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031170786
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/s1748-0132(07)70084-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014382756
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1021/acs.chemrev.5b00046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055085134
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1021/cm0011559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020207024
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1021/nl403949h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220479
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1021/nn800072t schema:sameAs https://app.dimensions.ai/details/publication/pub.1028058184
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1039/b800389k schema:sameAs https://app.dimensions.ai/details/publication/pub.1016198611
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1039/c0jm00145g schema:sameAs https://app.dimensions.ai/details/publication/pub.1018648575
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1039/c2cs15327k schema:sameAs https://app.dimensions.ai/details/publication/pub.1007387497
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1039/c6py00676k schema:sameAs https://app.dimensions.ai/details/publication/pub.1034464698
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1073/pnas.0809154105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002857214
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1097/01.sla.0000143302.48223.7e schema:sameAs https://app.dimensions.ai/details/publication/pub.1047578208
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1126/science.1095833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048204575
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1126/science.1185547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046994054
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1146/annurev-chembioeng-073009-100847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022368858
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1146/annurev-med-040210-162544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046918538
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1517/17425247.2014.950564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021411606
271 rdf:type schema:CreativeWork
272 https://doi.org/10.2106/00004623-200300003-00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068895395
273 rdf:type schema:CreativeWork
274 https://doi.org/10.2147/ijn.s121881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083421535
275 rdf:type schema:CreativeWork
276 https://www.grid.ac/institutes/grid.22401.35 schema:alternateName Tata Institute of Fundamental Research
277 schema:name Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, 400005, Mumbai, India
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.44871.3e schema:alternateName University of Mumbai
280 schema:name Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), 400019, Mumbai, India
281 Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Matunga (E), 400019, Mumbai, India
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...