Coupling Between Chemical Reactivity and Structural Relaxation in Pharmaceutical Glasses View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-10

AUTHORS

Sheri L. Shamblin, Bruno C. Hancock, Michael J. Pikal

ABSTRACT

PURPOSE: To test the hypothesis that the molecular motions associated with chemical degradation in glassy amorphous systems are governed by the molecular motions associated with structural relaxation. The extent to which a chemical process is linked to the motions associated with structural relaxation will depend on the nature of the chemical process and molecular motion requirements (e.g., translation of a complete molecule, rotational diffusion of a chemical functional group). In this study the chemical degradation and molecular mobility were measured in model systems to assess the degree of coupling between chemical reactivity and structural relaxation. The model systems included pure amorphous cephalosporin drugs, and amorphous molecular mixtures containing a chemically labile drug and an additive expected to moderate molecular mobility. METHODS: Amorphous drugs and mixtures with additives were prepared by lyophilization from aqueous solution. The physical properties of the model systems were characterized using optical microscopy and differential scanning calorimetry. The chemical degradation of the drugs alone and in mixtures with additives was measured using high-performance liquid chromatography (HPLC). Molecular mobility was measured using isothermal microcalorimetry to measure enthalpy changes associated with structural relaxation below T (g). RESULTS: A weak correlation between the rates of degradation and structural relaxation times in pure amorphous cephalosporins suggests that reactivity in these systems is coupled to molecular motions in the glassy state. However, when sucrose was added to one of the cephalosporin drugs stability improved even though this addition reduced T (g) and the relaxation time constant, tau(D)(beta), suggesting that there was no correlation between reactivity and structural relaxation in the cephalosporin mixtures. In contrast, the rate of ethacrynate sodium dimer formation in mixtures was more strongly coupled to the relaxation time constant, tau(D)(beta). CONCLUSIONS: These studies suggest that the extent to which chemical degradation is coupled to structural relaxation in glasses motions is determined by how closely the motions of the rate controlling step in chemical degradation are associated with structural relaxation. Moderate coupling between the rate of dimer formation for ethacrynate sodium in mixtures with sucrose, trehalose and PVP and structural relaxation constants suggests that chemical changes that require more significant molecular motion, and includes at least some translational diffusion, are more strongly coupled to the molecular motions associated with structural relaxation. The observation that sucrose stabilizes cefoxitin sodium even though it lowers T (g) and reduces the relaxation time constant, tau(D)(beta) is perhaps a result of the importance of other kinds of molecular motions in determining the chemical reactivity in glasses. More... »

PAGES

2254-2268

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11095-006-9080-8

DOI

http://dx.doi.org/10.1007/s11095-006-9080-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019231725

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16941232


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calorimetry, Differential Scanning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cefamandole", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cefoxitin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cephalothin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry, Pharmaceutical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry, Physical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatography, High Pressure Liquid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ethacrynic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Freeze Drying", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmaceutic Aids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmaceutical Preparations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Povidone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Solutions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sucrose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Trehalose", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pfizer (United States)", 
          "id": "https://www.grid.ac/institutes/grid.410513.2", 
          "name": [
            "Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 06269, Storrs, CT, USA", 
            "Groton Laboratories, Pfizer Inc., 06340, Groton, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shamblin", 
        "givenName": "Sheri L.", 
        "id": "sg:person.0674545256.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674545256.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pfizer (United States)", 
          "id": "https://www.grid.ac/institutes/grid.410513.2", 
          "name": [
            "Groton Laboratories, Pfizer Inc., 06340, Groton, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hancock", 
        "givenName": "Bruno C.", 
        "id": "sg:person.0636134005.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636134005.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Connecticut", 
          "id": "https://www.grid.ac/institutes/grid.63054.34", 
          "name": [
            "Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 06269, Storrs, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pikal", 
        "givenName": "Michael J.", 
        "id": "sg:person.0622347044.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622347044.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/jp953538d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004293873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp953538d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004293873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0260-8774(94)90028-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006875439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0260-8774(94)90028-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006875439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1520-6017(200003)89:3<417::aid-jps12>3.0.co;2-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007354833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1520-6017(200003)89:3<417::aid-jps12>3.0.co;2-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007354833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(91)90266-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007646842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(91)90266-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007646842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/js9704801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009254805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018988506336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010235358", 
          "https://doi.org/10.1023/a:1018988506336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01323572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011460707", 
          "https://doi.org/10.1007/bf01323572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01323572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011460707", 
          "https://doi.org/10.1007/bf01323572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.20364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013434491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.20364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013434491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-5173(89)90127-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014228101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-5173(89)90127-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014228101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.2600740226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014821256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.20022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019120470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.20298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019750986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.10582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022657182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.10181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022733384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1520-6017(200001)89:1<128::aid-jps13>3.0.co;2-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025634049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.103.035519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028981383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.20363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029669536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.20363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029669536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.10014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030397266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/03639048609042628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030847929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.2600601126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031075722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abbi.1996.0305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032966563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.2600680720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033325619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/js980227g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037871206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01992846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038468900", 
          "https://doi.org/10.1007/bf01992846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01992846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038468900", 
          "https://doi.org/10.1007/bf01992846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018941810744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042354045", 
          "https://doi.org/10.1023/a:1018941810744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012144810067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043850835", 
          "https://doi.org/10.1023/a:1012144810067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmra.1996.0029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048570332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/js9800174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050118323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012196826905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050154743", 
          "https://doi.org/10.1023/a:1012196826905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0099-5428(08)60263-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050175222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016292416526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052847671", 
          "https://doi.org/10.1023/a:1016292416526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr00101a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053861756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp970595t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056124366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp970595t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056124366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp983964+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056129163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp983964+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056129163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.471433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058050287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079909827", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-10", 
    "datePublishedReg": "2006-10-01", 
    "description": "PURPOSE: To test the hypothesis that the molecular motions associated with chemical degradation in glassy amorphous systems are governed by the molecular motions associated with structural relaxation. The extent to which a chemical process is linked to the motions associated with structural relaxation will depend on the nature of the chemical process and molecular motion requirements (e.g., translation of a complete molecule, rotational diffusion of a chemical functional group). In this study the chemical degradation and molecular mobility were measured in model systems to assess the degree of coupling between chemical reactivity and structural relaxation. The model systems included pure amorphous cephalosporin drugs, and amorphous molecular mixtures containing a chemically labile drug and an additive expected to moderate molecular mobility.\nMETHODS: Amorphous drugs and mixtures with additives were prepared by lyophilization from aqueous solution. The physical properties of the model systems were characterized using optical microscopy and differential scanning calorimetry. The chemical degradation of the drugs alone and in mixtures with additives was measured using high-performance liquid chromatography (HPLC). Molecular mobility was measured using isothermal microcalorimetry to measure enthalpy changes associated with structural relaxation below T (g).\nRESULTS: A weak correlation between the rates of degradation and structural relaxation times in pure amorphous cephalosporins suggests that reactivity in these systems is coupled to molecular motions in the glassy state. However, when sucrose was added to one of the cephalosporin drugs stability improved even though this addition reduced T (g) and the relaxation time constant, tau(D)(beta), suggesting that there was no correlation between reactivity and structural relaxation in the cephalosporin mixtures. In contrast, the rate of ethacrynate sodium dimer formation in mixtures was more strongly coupled to the relaxation time constant, tau(D)(beta).\nCONCLUSIONS: These studies suggest that the extent to which chemical degradation is coupled to structural relaxation in glasses motions is determined by how closely the motions of the rate controlling step in chemical degradation are associated with structural relaxation. Moderate coupling between the rate of dimer formation for ethacrynate sodium in mixtures with sucrose, trehalose and PVP and structural relaxation constants suggests that chemical changes that require more significant molecular motion, and includes at least some translational diffusion, are more strongly coupled to the molecular motions associated with structural relaxation. The observation that sucrose stabilizes cefoxitin sodium even though it lowers T (g) and reduces the relaxation time constant, tau(D)(beta) is perhaps a result of the importance of other kinds of molecular motions in determining the chemical reactivity in glasses.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11095-006-9080-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094644", 
        "issn": [
          "0724-8741", 
          "1573-904X"
        ], 
        "name": "Pharmaceutical Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Coupling Between Chemical Reactivity and Structural Relaxation in Pharmaceutical Glasses", 
    "pagination": "2254-2268", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5ba1f292f85f5ed07c0377d6bd70866bee3a075337a843f401f28d8b4595150d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16941232"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8406521"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11095-006-9080-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019231725"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11095-006-9080-8", 
      "https://app.dimensions.ai/details/publication/pub.1019231725"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11095-006-9080-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11095-006-9080-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11095-006-9080-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11095-006-9080-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11095-006-9080-8'


 

This table displays all metadata directly associated to this object as RDF triples.

272 TRIPLES      21 PREDICATES      83 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11095-006-9080-8 schema:about N17f27662e5d44a4ebaf240b705961f1e
2 N1abc3c087ec14434910e298c9cd7ed56
3 N29a21b6be6c749949c335379e2a7ca2d
4 N3c222a76b2914ea2b0eeb5ad9a58473a
5 N441f54106b364802a7d523e9d8271dbb
6 N4de990e15df34570882f32f87d6112d2
7 N5be31e66f8cc4a1e9101e70054ed6a46
8 N5c103834bd774d77b11c681cc6f1d3ff
9 N6b327b8df4a94e97b0ce611db0ca735a
10 N928e83bd30b44f52bc085fbc68549a22
11 N9413abba32a5492a98beda9955a71e7b
12 Naae4709bf081442e9c5ed1a7bbf1de8a
13 Nae6f5fa446c64ed095b3085699087fdf
14 Nb65d84c5f7b34a80966a00c93aa5a3de
15 Nc92ebb96eb1f4982867dd7d327721fad
16 Nf51c1a2361014c8a9d6eafdedbb6a6df
17 Nf8cd94e091834ce7b7b5a8f7ceed2656
18 anzsrc-for:03
19 anzsrc-for:0303
20 schema:author Ne293664b13a545308d5e6da44f3756f7
21 schema:citation sg:pub.10.1007/bf01323572
22 sg:pub.10.1007/bf01992846
23 sg:pub.10.1023/a:1012144810067
24 sg:pub.10.1023/a:1012196826905
25 sg:pub.10.1023/a:1016292416526
26 sg:pub.10.1023/a:1018941810744
27 sg:pub.10.1023/a:1018988506336
28 https://app.dimensions.ai/details/publication/pub.1079909827
29 https://doi.org/10.1002/(sici)1520-6017(200001)89:1<128::aid-jps13>3.0.co;2-z
30 https://doi.org/10.1002/(sici)1520-6017(200003)89:3<417::aid-jps12>3.0.co;2-v
31 https://doi.org/10.1002/jps.10014
32 https://doi.org/10.1002/jps.10181
33 https://doi.org/10.1002/jps.10582
34 https://doi.org/10.1002/jps.20022
35 https://doi.org/10.1002/jps.20298
36 https://doi.org/10.1002/jps.20363
37 https://doi.org/10.1002/jps.20364
38 https://doi.org/10.1002/jps.2600601126
39 https://doi.org/10.1002/jps.2600680720
40 https://doi.org/10.1002/jps.2600740226
41 https://doi.org/10.1006/abbi.1996.0305
42 https://doi.org/10.1006/jmra.1996.0029
43 https://doi.org/10.1016/0022-3093(91)90266-9
44 https://doi.org/10.1016/0260-8774(94)90028-0
45 https://doi.org/10.1016/0378-5173(89)90127-0
46 https://doi.org/10.1016/s0099-5428(08)60263-4
47 https://doi.org/10.1021/cr00101a006
48 https://doi.org/10.1021/jp953538d
49 https://doi.org/10.1021/jp970595t
50 https://doi.org/10.1021/jp983964+
51 https://doi.org/10.1021/js9704801
52 https://doi.org/10.1021/js9800174
53 https://doi.org/10.1021/js980227g
54 https://doi.org/10.1063/1.471433
55 https://doi.org/10.1103/physrevlett.62.1916
56 https://doi.org/10.1529/biophysj.103.035519
57 https://doi.org/10.3109/03639048609042628
58 schema:datePublished 2006-10
59 schema:datePublishedReg 2006-10-01
60 schema:description PURPOSE: To test the hypothesis that the molecular motions associated with chemical degradation in glassy amorphous systems are governed by the molecular motions associated with structural relaxation. The extent to which a chemical process is linked to the motions associated with structural relaxation will depend on the nature of the chemical process and molecular motion requirements (e.g., translation of a complete molecule, rotational diffusion of a chemical functional group). In this study the chemical degradation and molecular mobility were measured in model systems to assess the degree of coupling between chemical reactivity and structural relaxation. The model systems included pure amorphous cephalosporin drugs, and amorphous molecular mixtures containing a chemically labile drug and an additive expected to moderate molecular mobility. METHODS: Amorphous drugs and mixtures with additives were prepared by lyophilization from aqueous solution. The physical properties of the model systems were characterized using optical microscopy and differential scanning calorimetry. The chemical degradation of the drugs alone and in mixtures with additives was measured using high-performance liquid chromatography (HPLC). Molecular mobility was measured using isothermal microcalorimetry to measure enthalpy changes associated with structural relaxation below T (g). RESULTS: A weak correlation between the rates of degradation and structural relaxation times in pure amorphous cephalosporins suggests that reactivity in these systems is coupled to molecular motions in the glassy state. However, when sucrose was added to one of the cephalosporin drugs stability improved even though this addition reduced T (g) and the relaxation time constant, tau(D)(beta), suggesting that there was no correlation between reactivity and structural relaxation in the cephalosporin mixtures. In contrast, the rate of ethacrynate sodium dimer formation in mixtures was more strongly coupled to the relaxation time constant, tau(D)(beta). CONCLUSIONS: These studies suggest that the extent to which chemical degradation is coupled to structural relaxation in glasses motions is determined by how closely the motions of the rate controlling step in chemical degradation are associated with structural relaxation. Moderate coupling between the rate of dimer formation for ethacrynate sodium in mixtures with sucrose, trehalose and PVP and structural relaxation constants suggests that chemical changes that require more significant molecular motion, and includes at least some translational diffusion, are more strongly coupled to the molecular motions associated with structural relaxation. The observation that sucrose stabilizes cefoxitin sodium even though it lowers T (g) and reduces the relaxation time constant, tau(D)(beta) is perhaps a result of the importance of other kinds of molecular motions in determining the chemical reactivity in glasses.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree false
64 schema:isPartOf Nb49e394091f744d8bb83925dc5bf4e3b
65 Ne073056a2ead4942bac35be7d62497ff
66 sg:journal.1094644
67 schema:name Coupling Between Chemical Reactivity and Structural Relaxation in Pharmaceutical Glasses
68 schema:pagination 2254-2268
69 schema:productId N20f598e50b53448cb941b04d9839bf24
70 N37e7b3615b4841b6b21fbb66cdcda22e
71 N42d90dd0216349be979a1307f061ad40
72 N8234879a4592497a8fe1709a3ffbcf48
73 Nda700745bbe043d98d43a818966a318e
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019231725
75 https://doi.org/10.1007/s11095-006-9080-8
76 schema:sdDatePublished 2019-04-10T13:19
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N035b3059468f44c7ab747a2687126208
79 schema:url http://link.springer.com/10.1007%2Fs11095-006-9080-8
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N035b3059468f44c7ab747a2687126208 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N17f27662e5d44a4ebaf240b705961f1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Ethacrynic Acid
87 rdf:type schema:DefinedTerm
88 N1abc3c087ec14434910e298c9cd7ed56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Sucrose
90 rdf:type schema:DefinedTerm
91 N20f598e50b53448cb941b04d9839bf24 schema:name dimensions_id
92 schema:value pub.1019231725
93 rdf:type schema:PropertyValue
94 N29a21b6be6c749949c335379e2a7ca2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Chemical Phenomena
96 rdf:type schema:DefinedTerm
97 N37e7b3615b4841b6b21fbb66cdcda22e schema:name doi
98 schema:value 10.1007/s11095-006-9080-8
99 rdf:type schema:PropertyValue
100 N3c222a76b2914ea2b0eeb5ad9a58473a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Chemistry, Physical
102 rdf:type schema:DefinedTerm
103 N42d90dd0216349be979a1307f061ad40 schema:name readcube_id
104 schema:value 5ba1f292f85f5ed07c0377d6bd70866bee3a075337a843f401f28d8b4595150d
105 rdf:type schema:PropertyValue
106 N441f54106b364802a7d523e9d8271dbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Chromatography, High Pressure Liquid
108 rdf:type schema:DefinedTerm
109 N4de990e15df34570882f32f87d6112d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Povidone
111 rdf:type schema:DefinedTerm
112 N5be31e66f8cc4a1e9101e70054ed6a46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Pharmaceutic Aids
114 rdf:type schema:DefinedTerm
115 N5c103834bd774d77b11c681cc6f1d3ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Chemistry, Pharmaceutical
117 rdf:type schema:DefinedTerm
118 N62735b182af246ccbf9b45497f36899c rdf:first sg:person.0622347044.59
119 rdf:rest rdf:nil
120 N6b327b8df4a94e97b0ce611db0ca735a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Calorimetry, Differential Scanning
122 rdf:type schema:DefinedTerm
123 N8234879a4592497a8fe1709a3ffbcf48 schema:name pubmed_id
124 schema:value 16941232
125 rdf:type schema:PropertyValue
126 N928e83bd30b44f52bc085fbc68549a22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Crystallization
128 rdf:type schema:DefinedTerm
129 N9413abba32a5492a98beda9955a71e7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Solutions
131 rdf:type schema:DefinedTerm
132 Naae4709bf081442e9c5ed1a7bbf1de8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Trehalose
134 rdf:type schema:DefinedTerm
135 Nae6f5fa446c64ed095b3085699087fdf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Pharmaceutical Preparations
137 rdf:type schema:DefinedTerm
138 Nb03f63996cb645419d6609a868f5988a rdf:first sg:person.0636134005.91
139 rdf:rest N62735b182af246ccbf9b45497f36899c
140 Nb49e394091f744d8bb83925dc5bf4e3b schema:issueNumber 10
141 rdf:type schema:PublicationIssue
142 Nb65d84c5f7b34a80966a00c93aa5a3de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Cephalothin
144 rdf:type schema:DefinedTerm
145 Nc92ebb96eb1f4982867dd7d327721fad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Freeze Drying
147 rdf:type schema:DefinedTerm
148 Nda700745bbe043d98d43a818966a318e schema:name nlm_unique_id
149 schema:value 8406521
150 rdf:type schema:PropertyValue
151 Ne073056a2ead4942bac35be7d62497ff schema:volumeNumber 23
152 rdf:type schema:PublicationVolume
153 Ne293664b13a545308d5e6da44f3756f7 rdf:first sg:person.0674545256.27
154 rdf:rest Nb03f63996cb645419d6609a868f5988a
155 Nf51c1a2361014c8a9d6eafdedbb6a6df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Cefoxitin
157 rdf:type schema:DefinedTerm
158 Nf8cd94e091834ce7b7b5a8f7ceed2656 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Cefamandole
160 rdf:type schema:DefinedTerm
161 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
162 schema:name Chemical Sciences
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
165 schema:name Macromolecular and Materials Chemistry
166 rdf:type schema:DefinedTerm
167 sg:journal.1094644 schema:issn 0724-8741
168 1573-904X
169 schema:name Pharmaceutical Research
170 rdf:type schema:Periodical
171 sg:person.0622347044.59 schema:affiliation https://www.grid.ac/institutes/grid.63054.34
172 schema:familyName Pikal
173 schema:givenName Michael J.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622347044.59
175 rdf:type schema:Person
176 sg:person.0636134005.91 schema:affiliation https://www.grid.ac/institutes/grid.410513.2
177 schema:familyName Hancock
178 schema:givenName Bruno C.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636134005.91
180 rdf:type schema:Person
181 sg:person.0674545256.27 schema:affiliation https://www.grid.ac/institutes/grid.410513.2
182 schema:familyName Shamblin
183 schema:givenName Sheri L.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674545256.27
185 rdf:type schema:Person
186 sg:pub.10.1007/bf01323572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011460707
187 https://doi.org/10.1007/bf01323572
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/bf01992846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038468900
190 https://doi.org/10.1007/bf01992846
191 rdf:type schema:CreativeWork
192 sg:pub.10.1023/a:1012144810067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043850835
193 https://doi.org/10.1023/a:1012144810067
194 rdf:type schema:CreativeWork
195 sg:pub.10.1023/a:1012196826905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050154743
196 https://doi.org/10.1023/a:1012196826905
197 rdf:type schema:CreativeWork
198 sg:pub.10.1023/a:1016292416526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052847671
199 https://doi.org/10.1023/a:1016292416526
200 rdf:type schema:CreativeWork
201 sg:pub.10.1023/a:1018941810744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042354045
202 https://doi.org/10.1023/a:1018941810744
203 rdf:type schema:CreativeWork
204 sg:pub.10.1023/a:1018988506336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010235358
205 https://doi.org/10.1023/a:1018988506336
206 rdf:type schema:CreativeWork
207 https://app.dimensions.ai/details/publication/pub.1079909827 schema:CreativeWork
208 https://doi.org/10.1002/(sici)1520-6017(200001)89:1<128::aid-jps13>3.0.co;2-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025634049
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1002/(sici)1520-6017(200003)89:3<417::aid-jps12>3.0.co;2-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1007354833
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1002/jps.10014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030397266
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1002/jps.10181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022733384
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1002/jps.10582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022657182
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/jps.20022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019120470
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1002/jps.20298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019750986
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1002/jps.20363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029669536
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1002/jps.20364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013434491
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/jps.2600601126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031075722
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/jps.2600680720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033325619
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/jps.2600740226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014821256
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1006/abbi.1996.0305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032966563
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1006/jmra.1996.0029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048570332
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/0022-3093(91)90266-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007646842
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/0260-8774(94)90028-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006875439
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/0378-5173(89)90127-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014228101
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/s0099-5428(08)60263-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050175222
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1021/cr00101a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053861756
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1021/jp953538d schema:sameAs https://app.dimensions.ai/details/publication/pub.1004293873
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1021/jp970595t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056124366
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1021/jp983964+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1056129163
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1021/js9704801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009254805
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1021/js9800174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050118323
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1021/js980227g schema:sameAs https://app.dimensions.ai/details/publication/pub.1037871206
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1063/1.471433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058050287
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevlett.62.1916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798634
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1529/biophysj.103.035519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028981383
263 rdf:type schema:CreativeWork
264 https://doi.org/10.3109/03639048609042628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030847929
265 rdf:type schema:CreativeWork
266 https://www.grid.ac/institutes/grid.410513.2 schema:alternateName Pfizer (United States)
267 schema:name Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 06269, Storrs, CT, USA
268 Groton Laboratories, Pfizer Inc., 06340, Groton, CT, USA
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.63054.34 schema:alternateName University of Connecticut
271 schema:name Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 06269, Storrs, CT, USA
272 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...