Development and Application of Different Non-thermal Plasma Reactors for the Removal of Perfluorosurfactants in Water: A Comparative Study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-25

AUTHORS

Ali Mahyar, Hans Miessner, Siegfried Mueller, Kosar Hikmat Hama Aziz, Dieter Kalass, Detlev Moeller, Klaus Kretschmer, Saul Robles Manuel, Johannes Noack

ABSTRACT

The degradation of perfluorosurfactants (PFS), particularly of PFOS, has been studied in dielectric barrier discharge (DBD) and nano-pulse corona discharge (PCD) reactors. DBD-plasma is generated in two different types of reactors. First, in a suitable falling film reactor with a planar configuration for the treatment of ca. 0.4 L PFS solution, and second, in a horizontal trough reactor for the treatment of ca. 8 L PFS contaminated water. For the comparison, the efficiency of PFS degradation by ozonation and photocatalytic ozonation processes were also examined using a similar falling film reactor, and it was found that these methods are not as efficient as the DBD plasma. The degradation of PFSs by non-thermal plasma was investigated in dependence on PFS concentration and gas atmosphere by HPLC/MS and ion chromatography. Concerning the energy yield, the nano-pulse corona is significantly more efficient than the DBD plasma. For an initial PFOS concentration of 10 mg/L the G50 of the PCD is about 200 mg/kWh, while it is less than 100 mg/kWh for the DBD reactor. Compared to the plasma in He atmosphere, in all reactors the decomposition of PFS under Ar atmosphere results in a deeper mineralization, which is expressed by fluoride recovery. More... »

PAGES

1-14

References to SciGraph publications

  • 2010-02. Water Purification by Plasmas: Which Reactors are Most Energy Efficient? in PLASMA CHEMISTRY AND PLASMA PROCESSING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11090-019-09977-6

    DOI

    http://dx.doi.org/10.1007/s11090-019-09977-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112987911


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Laboratory for Atmospheric Chemistry and Air Quality, Brandenburg University of Technology Cottbus-Senftenberg, 12489, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mahyar", 
            "givenName": "Ali", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Laboratory for Atmospheric Chemistry and Air Quality, Brandenburg University of Technology Cottbus-Senftenberg, 12489, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miessner", 
            "givenName": "Hans", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Laboratory for Atmospheric Chemistry and Air Quality, Brandenburg University of Technology Cottbus-Senftenberg, 12489, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mueller", 
            "givenName": "Siegfried", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Komar University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.472327.7", 
              "name": [
                "Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Region, Iraq", 
                "Komar Research Center (KRC), Komar University of Science and Technology, 46001, Sulaimani City, Kurdistan Region, Iraq"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hama Aziz", 
            "givenName": "Kosar Hikmat", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Laboratory for Atmospheric Chemistry and Air Quality, Brandenburg University of Technology Cottbus-Senftenberg, 12489, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kalass", 
            "givenName": "Dieter", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Laboratory for Atmospheric Chemistry and Air Quality, Brandenburg University of Technology Cottbus-Senftenberg, 12489, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moeller", 
            "givenName": "Detlev", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "DELTA Engineering and Chemistry GmbH, Rohrdamm 88, 13629, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kretschmer", 
            "givenName": "Klaus", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "DELTA Engineering and Chemistry GmbH, Rohrdamm 88, 13629, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Robles Manuel", 
            "givenName": "Saul", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "DELTA Engineering and Chemistry GmbH, Rohrdamm 88, 13629, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Noack", 
            "givenName": "Johannes", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/1361-6463/50/1/014003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008106993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/ft9928803033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026806439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2016.10.137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037843226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2016.10.137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037843226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2013.09.090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038099124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molliq.2016.07.142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038735510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2016.03.116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040126306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/ees.2016.0233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042321516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11090-009-9202-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046919722", 
              "https://doi.org/10.1007/s11090-009-9202-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11090-009-9202-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046919722", 
              "https://doi.org/10.1007/s11090-009-9202-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2012.10.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047652842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/eej.22499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048651872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es052580b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055498900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es052580b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055498900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.est.6b04215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079390352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2017.07.076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090669423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhazmat.2017.09.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091836138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.psep.2017.11.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092801941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1361-6463/aacd9c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104998790"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-25", 
        "datePublishedReg": "2019-03-25", 
        "description": "The degradation of perfluorosurfactants (PFS), particularly of PFOS, has been studied in dielectric barrier discharge (DBD) and nano-pulse corona discharge (PCD) reactors. DBD-plasma is generated in two different types of reactors. First, in a suitable falling film reactor with a planar configuration for the treatment of ca. 0.4 L PFS solution, and second, in a horizontal trough reactor for the treatment of ca. 8 L PFS contaminated water. For the comparison, the efficiency of PFS degradation by ozonation and photocatalytic ozonation processes were also examined using a similar falling film reactor, and it was found that these methods are not as efficient as the DBD plasma. The degradation of PFSs by non-thermal plasma was investigated in dependence on PFS concentration and gas atmosphere by HPLC/MS and ion chromatography. Concerning the energy yield, the nano-pulse corona is significantly more efficient than the DBD plasma. For an initial PFOS concentration of 10 mg/L the G50 of the PCD is about 200 mg/kWh, while it is less than 100 mg/kWh for the DBD reactor. Compared to the plasma in He atmosphere, in all reactors the decomposition of PFS under Ar atmosphere results in a deeper mineralization, which is expressed by fluoride recovery.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11090-019-09977-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1124016", 
            "issn": [
              "0272-4324", 
              "1572-8986"
            ], 
            "name": "Plasma Chemistry and Plasma Processing", 
            "type": "Periodical"
          }
        ], 
        "name": "Development and Application of Different Non-thermal Plasma Reactors for the Removal of Perfluorosurfactants in Water: A Comparative Study", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "956ad39120bac5d2904e5c0830128d6228a2830b15b3588bc308df4eb93b802e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11090-019-09977-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112987911"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11090-019-09977-6", 
          "https://app.dimensions.ai/details/publication/pub.1112987911"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112059_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11090-019-09977-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11090-019-09977-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11090-019-09977-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11090-019-09977-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11090-019-09977-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      21 PREDICATES      40 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11090-019-09977-6 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N41caa533771d4c78bdf89284d9a3012d
    4 schema:citation sg:pub.10.1007/s11090-009-9202-2
    5 https://doi.org/10.1002/eej.22499
    6 https://doi.org/10.1016/j.cej.2013.09.090
    7 https://doi.org/10.1016/j.cej.2016.03.116
    8 https://doi.org/10.1016/j.cej.2016.10.137
    9 https://doi.org/10.1016/j.cej.2017.07.076
    10 https://doi.org/10.1016/j.jhazmat.2012.10.029
    11 https://doi.org/10.1016/j.jhazmat.2017.09.025
    12 https://doi.org/10.1016/j.molliq.2016.07.142
    13 https://doi.org/10.1016/j.psep.2017.11.005
    14 https://doi.org/10.1021/acs.est.6b04215
    15 https://doi.org/10.1021/es052580b
    16 https://doi.org/10.1039/ft9928803033
    17 https://doi.org/10.1088/1361-6463/50/1/014003
    18 https://doi.org/10.1088/1361-6463/aacd9c
    19 https://doi.org/10.1089/ees.2016.0233
    20 schema:datePublished 2019-03-25
    21 schema:datePublishedReg 2019-03-25
    22 schema:description The degradation of perfluorosurfactants (PFS), particularly of PFOS, has been studied in dielectric barrier discharge (DBD) and nano-pulse corona discharge (PCD) reactors. DBD-plasma is generated in two different types of reactors. First, in a suitable falling film reactor with a planar configuration for the treatment of ca. 0.4 L PFS solution, and second, in a horizontal trough reactor for the treatment of ca. 8 L PFS contaminated water. For the comparison, the efficiency of PFS degradation by ozonation and photocatalytic ozonation processes were also examined using a similar falling film reactor, and it was found that these methods are not as efficient as the DBD plasma. The degradation of PFSs by non-thermal plasma was investigated in dependence on PFS concentration and gas atmosphere by HPLC/MS and ion chromatography. Concerning the energy yield, the nano-pulse corona is significantly more efficient than the DBD plasma. For an initial PFOS concentration of 10 mg/L the G50 of the PCD is about 200 mg/kWh, while it is less than 100 mg/kWh for the DBD reactor. Compared to the plasma in He atmosphere, in all reactors the decomposition of PFS under Ar atmosphere results in a deeper mineralization, which is expressed by fluoride recovery.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf sg:journal.1124016
    27 schema:name Development and Application of Different Non-thermal Plasma Reactors for the Removal of Perfluorosurfactants in Water: A Comparative Study
    28 schema:pagination 1-14
    29 schema:productId N03b90d16ae454a4c996e8789fc58d552
    30 N8d8b30db8ca54c55b7a61a3cab816c16
    31 N8ffaa8ad734540af84dc5815860e9bdc
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112987911
    33 https://doi.org/10.1007/s11090-019-09977-6
    34 schema:sdDatePublished 2019-04-11T13:05
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Ne225020d475a407ca86bb9ea8c7bbb7a
    37 schema:url https://link.springer.com/10.1007%2Fs11090-019-09977-6
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N03b90d16ae454a4c996e8789fc58d552 schema:name dimensions_id
    42 schema:value pub.1112987911
    43 rdf:type schema:PropertyValue
    44 N0ac62fc70ee04bbfba77e65f66700b44 schema:name DELTA Engineering and Chemistry GmbH, Rohrdamm 88, 13629, Berlin, Germany
    45 rdf:type schema:Organization
    46 N0c508cdc4da141248d5315a12d450325 schema:affiliation N0ac62fc70ee04bbfba77e65f66700b44
    47 schema:familyName Noack
    48 schema:givenName Johannes
    49 rdf:type schema:Person
    50 N1202d5a13dc04557ac8c14802a69b91c schema:affiliation N8063488f00d74b95b75964e7587d4746
    51 schema:familyName Kalass
    52 schema:givenName Dieter
    53 rdf:type schema:Person
    54 N13042cdd53574a36941a3acf01a309d6 schema:affiliation Nd3e294ce42ad40658ad7d2b047b2b863
    55 schema:familyName Moeller
    56 schema:givenName Detlev
    57 rdf:type schema:Person
    58 N21a04f693a794b3e883f08c8d8bb040d rdf:first N1202d5a13dc04557ac8c14802a69b91c
    59 rdf:rest N8cb259c9f3974cd6b36506502ce09bb1
    60 N33dd815f3ee549b4ab20417f925fccf2 schema:name Laboratory for Atmospheric Chemistry and Air Quality, Brandenburg University of Technology Cottbus-Senftenberg, 12489, Berlin, Germany
    61 rdf:type schema:Organization
    62 N41caa533771d4c78bdf89284d9a3012d rdf:first N9fb773da0e274ab38ec4c46488c11c17
    63 rdf:rest Nb74b19ec00b045329c6e7d09ec8ce59c
    64 N51f43964d92d4df3992b70f4a55a7d46 schema:affiliation N780aa7fd51e546fcbbc650871f890162
    65 schema:familyName Kretschmer
    66 schema:givenName Klaus
    67 rdf:type schema:Person
    68 N5392cbfe89994a8dbf82ef80c19b3724 rdf:first N67fe37a16de4421292d56df38368d6f7
    69 rdf:rest Nd3094b976cc34215878c70c933a8785e
    70 N5b96e527192b40ffaf15e39e664db4fc rdf:first N51f43964d92d4df3992b70f4a55a7d46
    71 rdf:rest N5392cbfe89994a8dbf82ef80c19b3724
    72 N67b23beccf414eb2b683b1a916824f30 schema:name Laboratory for Atmospheric Chemistry and Air Quality, Brandenburg University of Technology Cottbus-Senftenberg, 12489, Berlin, Germany
    73 rdf:type schema:Organization
    74 N67fe37a16de4421292d56df38368d6f7 schema:affiliation Nf3ecf4a948184038b0aa9ad6c33ae81c
    75 schema:familyName Robles Manuel
    76 schema:givenName Saul
    77 rdf:type schema:Person
    78 N6c68c5d0fa484fd0afe5947939ca0eb7 schema:affiliation N67b23beccf414eb2b683b1a916824f30
    79 schema:familyName Miessner
    80 schema:givenName Hans
    81 rdf:type schema:Person
    82 N780aa7fd51e546fcbbc650871f890162 schema:name DELTA Engineering and Chemistry GmbH, Rohrdamm 88, 13629, Berlin, Germany
    83 rdf:type schema:Organization
    84 N8063488f00d74b95b75964e7587d4746 schema:name Laboratory for Atmospheric Chemistry and Air Quality, Brandenburg University of Technology Cottbus-Senftenberg, 12489, Berlin, Germany
    85 rdf:type schema:Organization
    86 N8cb259c9f3974cd6b36506502ce09bb1 rdf:first N13042cdd53574a36941a3acf01a309d6
    87 rdf:rest N5b96e527192b40ffaf15e39e664db4fc
    88 N8d8b30db8ca54c55b7a61a3cab816c16 schema:name doi
    89 schema:value 10.1007/s11090-019-09977-6
    90 rdf:type schema:PropertyValue
    91 N8ffaa8ad734540af84dc5815860e9bdc schema:name readcube_id
    92 schema:value 956ad39120bac5d2904e5c0830128d6228a2830b15b3588bc308df4eb93b802e
    93 rdf:type schema:PropertyValue
    94 N90c08a3f412348ccb539feee80d46f28 schema:name Laboratory for Atmospheric Chemistry and Air Quality, Brandenburg University of Technology Cottbus-Senftenberg, 12489, Berlin, Germany
    95 rdf:type schema:Organization
    96 N9a4c4f0c98ec44598038bf9fe90ab0e4 schema:affiliation https://www.grid.ac/institutes/grid.472327.7
    97 schema:familyName Hama Aziz
    98 schema:givenName Kosar Hikmat
    99 rdf:type schema:Person
    100 N9fb773da0e274ab38ec4c46488c11c17 schema:affiliation N90c08a3f412348ccb539feee80d46f28
    101 schema:familyName Mahyar
    102 schema:givenName Ali
    103 rdf:type schema:Person
    104 Nad9d1ebd5e5746dca0c04ddce31cf6b3 rdf:first Ne437b34be4344e9eadfd59c515b6d5fe
    105 rdf:rest Nb08ea4408db94817b26c3e75e88c7b3c
    106 Nb08ea4408db94817b26c3e75e88c7b3c rdf:first N9a4c4f0c98ec44598038bf9fe90ab0e4
    107 rdf:rest N21a04f693a794b3e883f08c8d8bb040d
    108 Nb74b19ec00b045329c6e7d09ec8ce59c rdf:first N6c68c5d0fa484fd0afe5947939ca0eb7
    109 rdf:rest Nad9d1ebd5e5746dca0c04ddce31cf6b3
    110 Nd3094b976cc34215878c70c933a8785e rdf:first N0c508cdc4da141248d5315a12d450325
    111 rdf:rest rdf:nil
    112 Nd3e294ce42ad40658ad7d2b047b2b863 schema:name Laboratory for Atmospheric Chemistry and Air Quality, Brandenburg University of Technology Cottbus-Senftenberg, 12489, Berlin, Germany
    113 rdf:type schema:Organization
    114 Ne225020d475a407ca86bb9ea8c7bbb7a schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 Ne437b34be4344e9eadfd59c515b6d5fe schema:affiliation N33dd815f3ee549b4ab20417f925fccf2
    117 schema:familyName Mueller
    118 schema:givenName Siegfried
    119 rdf:type schema:Person
    120 Nf3ecf4a948184038b0aa9ad6c33ae81c schema:name DELTA Engineering and Chemistry GmbH, Rohrdamm 88, 13629, Berlin, Germany
    121 rdf:type schema:Organization
    122 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Physical Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1124016 schema:issn 0272-4324
    129 1572-8986
    130 schema:name Plasma Chemistry and Plasma Processing
    131 rdf:type schema:Periodical
    132 sg:pub.10.1007/s11090-009-9202-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046919722
    133 https://doi.org/10.1007/s11090-009-9202-2
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1002/eej.22499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048651872
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.cej.2013.09.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038099124
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.cej.2016.03.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040126306
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.cej.2016.10.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037843226
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.cej.2017.07.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090669423
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.jhazmat.2012.10.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047652842
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.jhazmat.2017.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091836138
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.molliq.2016.07.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038735510
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.psep.2017.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092801941
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1021/acs.est.6b04215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079390352
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1021/es052580b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055498900
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1039/ft9928803033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026806439
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1088/1361-6463/50/1/014003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008106993
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1088/1361-6463/aacd9c schema:sameAs https://app.dimensions.ai/details/publication/pub.1104998790
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1089/ees.2016.0233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042321516
    164 rdf:type schema:CreativeWork
    165 https://www.grid.ac/institutes/grid.472327.7 schema:alternateName Komar University of Science and Technology
    166 schema:name Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Region, Iraq
    167 Komar Research Center (KRC), Komar University of Science and Technology, 46001, Sulaimani City, Kurdistan Region, Iraq
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...