Influence of Wire Initial Composition on Anode Microstructure and on Metal Transfer Mode in GMAW: Noteworthy Role of Alkali Elements View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11-10

AUTHORS

F. Valensi, N. Pellerin, S. Pellerin, Q. Castillon, K. Dzierzega, F. Briand, J.-P. Planckaert

ABSTRACT

Metal Active Gas (MAG) welding in presence of Argon and CO2 mixture as shielding gas is a largely developed process allowing the transfer of the liquid metal from the consumable wire anode to the workpiece according to various modes (short-arc, globular, spray-arc). The CO2 presence in the shielding gas leads to the formation of an oxide layer, or gangue, wrapping the droplet, limiting the access to the spray-mode transfer, taking into account the low conductivity and the high viscosity of this layer. Several electrodes of various compositions have been tested thanks to Flux Cored Arc Welding, to limit the gangue formation or its negative contribution, based on Ti, La, Zr and alkali metals addition or reduction in silicon content. The results are interpreted considering the metal transfer mode for a given current intensity (330 and 410 A), with various CO2 concentrations in the shielding gas. Finally, the role of the gangue, compared to the other factors governing the droplet detachment, is discussed. A decrease in silicon content limits significantly the gangue formation and gives access to spray arc transfer up to 30 vol.% of CO2 at 330 A. Titanium addition leads to the same results. The tests in presence of zirconium proved the conductivity improvement of the gangue. The addition of alkali allows to stabilize the spray arc up to the noteworthy value of 60 vol.% of CO2 at 330 A, supporting the hypothesis of a strong influence of viscosity on droplets detachment in the process. More... »

PAGES

177-205

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11090-017-9860-4

DOI

http://dx.doi.org/10.1007/s11090-017-9860-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092634097


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "LAPLACE (Laboratoire Plasma et Conversion d\u2019Energie), Universit\u00e9 de Toulouse, UPS, INPT, 118 route de Narbonne, 31062, Toulouse Cedex 9, France", 
          "id": "http://www.grid.ac/institutes/grid.15781.3a", 
          "name": [
            "LAPLACE (Laboratoire Plasma et Conversion d\u2019Energie), Universit\u00e9 de Toulouse, UPS, INPT, 118 route de Narbonne, 31062, Toulouse Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valensi", 
        "givenName": "F.", 
        "id": "sg:person.012240634724.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012240634724.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNRS, CEMHTI UPR 3079, Universit\u00e9 d\u2019Orl\u00e9ans, Avenue de la recherche scientifique, 45071, Orl\u00e9ans, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "CNRS, CEMHTI UPR 3079, Universit\u00e9 d\u2019Orl\u00e9ans, Avenue de la recherche scientifique, 45071, Orl\u00e9ans, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pellerin", 
        "givenName": "N.", 
        "id": "sg:person.01126322563.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126322563.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GREMI, UMR 7344, Universit\u00e9 d\u2019Orl\u00e9ans, CNRS, 63 avenue de Lattre de Tassigny, 18020, Bourges Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.463918.1", 
          "name": [
            "GREMI, UMR 7344, Universit\u00e9 d\u2019Orl\u00e9ans, CNRS, 63 avenue de Lattre de Tassigny, 18020, Bourges Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pellerin", 
        "givenName": "S.", 
        "id": "sg:person.013173377075.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173377075.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GREMI, UMR 7344, Universit\u00e9 d\u2019Orl\u00e9ans, CNRS, 63 avenue de Lattre de Tassigny, 18020, Bourges Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.463918.1", 
          "name": [
            "GREMI, UMR 7344, Universit\u00e9 d\u2019Orl\u00e9ans, CNRS, 63 avenue de Lattre de Tassigny, 18020, Bourges Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castillon", 
        "givenName": "Q.", 
        "id": "sg:person.016550605227.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550605227.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Jagiellonian University, \u0141ojasiewicza 11, 30-348, Krak\u00f3w, Poland", 
          "id": "http://www.grid.ac/institutes/grid.5522.0", 
          "name": [
            "Institute of Physics, Jagiellonian University, \u0141ojasiewicza 11, 30-348, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dzierzega", 
        "givenName": "K.", 
        "id": "sg:person.0654164135.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654164135.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Liquide Research and Development, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, 78350, Les Loges-En-Josas, France", 
          "id": "http://www.grid.ac/institutes/grid.423839.7", 
          "name": [
            "Air Liquide Research and Development, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, 78350, Les Loges-En-Josas, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Briand", 
        "givenName": "F.", 
        "id": "sg:person.011440475027.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011440475027.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Liquide Research and Development, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, 78350, Les Loges-En-Josas, France", 
          "id": "http://www.grid.ac/institutes/grid.423839.7", 
          "name": [
            "Air Liquide Research and Development, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, 78350, Les Loges-En-Josas, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Planckaert", 
        "givenName": "J.-P.", 
        "id": "sg:person.013033436027.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033436027.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02657139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024282598", 
          "https://doi.org/10.1007/bf02657139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01115712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008805207", 
          "https://doi.org/10.1007/bf01115712"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11-10", 
    "datePublishedReg": "2017-11-10", 
    "description": "Metal Active Gas (MAG) welding in presence of Argon and CO2 mixture as shielding gas is a largely developed process allowing the transfer of the liquid metal from the consumable wire anode to the workpiece according to various modes (short-arc, globular, spray-arc). The CO2 presence in the shielding gas leads to the formation of an oxide layer, or gangue, wrapping the droplet, limiting the access to the spray-mode transfer, taking into account the low conductivity and the high viscosity of this layer. Several electrodes of various compositions have been tested thanks to Flux Cored Arc Welding, to limit the gangue formation or its negative contribution, based on Ti, La, Zr and alkali metals addition or reduction in silicon content. The results are interpreted considering the metal transfer mode for a given current intensity (330 and 410\u00a0A), with various CO2 concentrations in the shielding gas. Finally, the role of the gangue, compared to the other factors governing the droplet detachment, is discussed. A decrease in silicon content limits significantly the gangue formation and gives access to spray arc transfer up to 30\u00a0vol.% of CO2 at 330\u00a0A. Titanium addition leads to the same results. The tests in presence of zirconium proved the conductivity improvement of the gangue. The addition of alkali allows to stabilize the spray arc up to the noteworthy value of 60\u00a0vol.% of CO2 at 330\u00a0A, supporting the hypothesis of a strong influence of viscosity on droplets detachment in the process.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11090-017-9860-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1124016", 
        "issn": [
          "0272-4324", 
          "1572-8986"
        ], 
        "name": "Plasma Chemistry and Plasma Processing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "metal transfer mode", 
      "droplet detachment", 
      "metal active gas welding", 
      "Flux Cored Arc Welding", 
      "transfer mode", 
      "gas welding", 
      "arc welding", 
      "shielding gas", 
      "anode microstructure", 
      "consumable wire", 
      "titanium addition", 
      "oxide layer", 
      "conductivity improvement", 
      "presence of zirconium", 
      "liquid metal", 
      "silicon content", 
      "developed process", 
      "arc transfer", 
      "low conductivity", 
      "CO2 presence", 
      "CO2 mixtures", 
      "welding", 
      "gangue", 
      "high viscosity", 
      "alkali metal addition", 
      "content limit", 
      "metal addition", 
      "presence of argon", 
      "gas", 
      "layer", 
      "viscosity", 
      "GMAW", 
      "current intensity", 
      "initial composition", 
      "workpiece", 
      "microstructure", 
      "addition of alkali", 
      "strong influence", 
      "conductivity", 
      "noteworthy value", 
      "transfer", 
      "CO2", 
      "droplets", 
      "mode", 
      "spray", 
      "zirconium", 
      "Ti", 
      "alkali elements", 
      "Zr", 
      "wire", 
      "CO2 concentration", 
      "influence", 
      "electrode", 
      "process", 
      "metals", 
      "argon", 
      "formation", 
      "composition", 
      "alkali", 
      "negative contribution", 
      "mixture", 
      "results", 
      "thanks", 
      "addition", 
      "noteworthy role", 
      "test", 
      "detachment", 
      "content", 
      "elements", 
      "improvement", 
      "reduction", 
      "account", 
      "limit", 
      "La", 
      "same results", 
      "concentration", 
      "values", 
      "presence", 
      "intensity", 
      "decrease", 
      "contribution", 
      "factors", 
      "access", 
      "role", 
      "hypothesis", 
      "Active Gas (MAG) welding", 
      "spray-mode transfer", 
      "Cored Arc Welding", 
      "gangue formation", 
      "silicon content limits", 
      "Wire Initial Composition"
    ], 
    "name": "Influence of Wire Initial Composition on Anode Microstructure and on Metal Transfer Mode in GMAW: Noteworthy Role of Alkali Elements", 
    "pagination": "177-205", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092634097"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11090-017-9860-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11090-017-9860-4", 
      "https://app.dimensions.ai/details/publication/pub.1092634097"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_725.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11090-017-9860-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11090-017-9860-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11090-017-9860-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11090-017-9860-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11090-017-9860-4'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      22 PREDICATES      118 URIs      108 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11090-017-9860-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N35e3c86df24440488fecd2f935c8fcd0
4 schema:citation sg:pub.10.1007/bf01115712
5 sg:pub.10.1007/bf02657139
6 schema:datePublished 2017-11-10
7 schema:datePublishedReg 2017-11-10
8 schema:description Metal Active Gas (MAG) welding in presence of Argon and CO2 mixture as shielding gas is a largely developed process allowing the transfer of the liquid metal from the consumable wire anode to the workpiece according to various modes (short-arc, globular, spray-arc). The CO2 presence in the shielding gas leads to the formation of an oxide layer, or gangue, wrapping the droplet, limiting the access to the spray-mode transfer, taking into account the low conductivity and the high viscosity of this layer. Several electrodes of various compositions have been tested thanks to Flux Cored Arc Welding, to limit the gangue formation or its negative contribution, based on Ti, La, Zr and alkali metals addition or reduction in silicon content. The results are interpreted considering the metal transfer mode for a given current intensity (330 and 410 A), with various CO2 concentrations in the shielding gas. Finally, the role of the gangue, compared to the other factors governing the droplet detachment, is discussed. A decrease in silicon content limits significantly the gangue formation and gives access to spray arc transfer up to 30 vol.% of CO2 at 330 A. Titanium addition leads to the same results. The tests in presence of zirconium proved the conductivity improvement of the gangue. The addition of alkali allows to stabilize the spray arc up to the noteworthy value of 60 vol.% of CO2 at 330 A, supporting the hypothesis of a strong influence of viscosity on droplets detachment in the process.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N183484adcf5c4e619ac8337b502c18c6
13 N873d998aa4c1475fbe85071ff3352e21
14 sg:journal.1124016
15 schema:keywords Active Gas (MAG) welding
16 CO2
17 CO2 concentration
18 CO2 mixtures
19 CO2 presence
20 Cored Arc Welding
21 Flux Cored Arc Welding
22 GMAW
23 La
24 Ti
25 Wire Initial Composition
26 Zr
27 access
28 account
29 addition
30 addition of alkali
31 alkali
32 alkali elements
33 alkali metal addition
34 anode microstructure
35 arc transfer
36 arc welding
37 argon
38 composition
39 concentration
40 conductivity
41 conductivity improvement
42 consumable wire
43 content
44 content limit
45 contribution
46 current intensity
47 decrease
48 detachment
49 developed process
50 droplet detachment
51 droplets
52 electrode
53 elements
54 factors
55 formation
56 gangue
57 gangue formation
58 gas
59 gas welding
60 high viscosity
61 hypothesis
62 improvement
63 influence
64 initial composition
65 intensity
66 layer
67 limit
68 liquid metal
69 low conductivity
70 metal active gas welding
71 metal addition
72 metal transfer mode
73 metals
74 microstructure
75 mixture
76 mode
77 negative contribution
78 noteworthy role
79 noteworthy value
80 oxide layer
81 presence
82 presence of argon
83 presence of zirconium
84 process
85 reduction
86 results
87 role
88 same results
89 shielding gas
90 silicon content
91 silicon content limits
92 spray
93 spray-mode transfer
94 strong influence
95 test
96 thanks
97 titanium addition
98 transfer
99 transfer mode
100 values
101 viscosity
102 welding
103 wire
104 workpiece
105 zirconium
106 schema:name Influence of Wire Initial Composition on Anode Microstructure and on Metal Transfer Mode in GMAW: Noteworthy Role of Alkali Elements
107 schema:pagination 177-205
108 schema:productId N32639b793c644017813cf8bb2575e9d5
109 N39a986449e36429faebe29c4e0cb5136
110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092634097
111 https://doi.org/10.1007/s11090-017-9860-4
112 schema:sdDatePublished 2021-11-01T18:29
113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
114 schema:sdPublisher N7e453a2a39834e9e9dcde708a83f7d9d
115 schema:url https://doi.org/10.1007/s11090-017-9860-4
116 sgo:license sg:explorer/license/
117 sgo:sdDataset articles
118 rdf:type schema:ScholarlyArticle
119 N13e155996f304d60bf4630a7ff23bb07 rdf:first sg:person.016550605227.14
120 rdf:rest Na73fcd62237442719b7593f7ad218cad
121 N183484adcf5c4e619ac8337b502c18c6 schema:issueNumber 1
122 rdf:type schema:PublicationIssue
123 N2c0ff5c65ea44426b8e31f9afe7b0469 rdf:first sg:person.013033436027.38
124 rdf:rest rdf:nil
125 N32639b793c644017813cf8bb2575e9d5 schema:name doi
126 schema:value 10.1007/s11090-017-9860-4
127 rdf:type schema:PropertyValue
128 N35e3c86df24440488fecd2f935c8fcd0 rdf:first sg:person.012240634724.39
129 rdf:rest Nce26beddcc7a42ce94c099d41c5d2f0f
130 N39a986449e36429faebe29c4e0cb5136 schema:name dimensions_id
131 schema:value pub.1092634097
132 rdf:type schema:PropertyValue
133 N3b1d9dac47044b0b9a7c4a32344a5667 rdf:first sg:person.013173377075.24
134 rdf:rest N13e155996f304d60bf4630a7ff23bb07
135 N7e453a2a39834e9e9dcde708a83f7d9d schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 N873d998aa4c1475fbe85071ff3352e21 schema:volumeNumber 38
138 rdf:type schema:PublicationVolume
139 Na73fcd62237442719b7593f7ad218cad rdf:first sg:person.0654164135.49
140 rdf:rest Ne9710b64e8a748afb75f60addd5fe809
141 Nce26beddcc7a42ce94c099d41c5d2f0f rdf:first sg:person.01126322563.56
142 rdf:rest N3b1d9dac47044b0b9a7c4a32344a5667
143 Ne9710b64e8a748afb75f60addd5fe809 rdf:first sg:person.011440475027.87
144 rdf:rest N2c0ff5c65ea44426b8e31f9afe7b0469
145 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
146 schema:name Engineering
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
149 schema:name Materials Engineering
150 rdf:type schema:DefinedTerm
151 sg:journal.1124016 schema:issn 0272-4324
152 1572-8986
153 schema:name Plasma Chemistry and Plasma Processing
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:person.01126322563.56 schema:affiliation grid-institutes:grid.4444.0
157 schema:familyName Pellerin
158 schema:givenName N.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126322563.56
160 rdf:type schema:Person
161 sg:person.011440475027.87 schema:affiliation grid-institutes:grid.423839.7
162 schema:familyName Briand
163 schema:givenName F.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011440475027.87
165 rdf:type schema:Person
166 sg:person.012240634724.39 schema:affiliation grid-institutes:grid.15781.3a
167 schema:familyName Valensi
168 schema:givenName F.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012240634724.39
170 rdf:type schema:Person
171 sg:person.013033436027.38 schema:affiliation grid-institutes:grid.423839.7
172 schema:familyName Planckaert
173 schema:givenName J.-P.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033436027.38
175 rdf:type schema:Person
176 sg:person.013173377075.24 schema:affiliation grid-institutes:grid.463918.1
177 schema:familyName Pellerin
178 schema:givenName S.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173377075.24
180 rdf:type schema:Person
181 sg:person.016550605227.14 schema:affiliation grid-institutes:grid.463918.1
182 schema:familyName Castillon
183 schema:givenName Q.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550605227.14
185 rdf:type schema:Person
186 sg:person.0654164135.49 schema:affiliation grid-institutes:grid.5522.0
187 schema:familyName Dzierzega
188 schema:givenName K.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654164135.49
190 rdf:type schema:Person
191 sg:pub.10.1007/bf01115712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008805207
192 https://doi.org/10.1007/bf01115712
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/bf02657139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024282598
195 https://doi.org/10.1007/bf02657139
196 rdf:type schema:CreativeWork
197 grid-institutes:grid.15781.3a schema:alternateName LAPLACE (Laboratoire Plasma et Conversion d’Energie), Université de Toulouse, UPS, INPT, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
198 schema:name LAPLACE (Laboratoire Plasma et Conversion d’Energie), Université de Toulouse, UPS, INPT, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
199 rdf:type schema:Organization
200 grid-institutes:grid.423839.7 schema:alternateName Air Liquide Research and Development, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, 78350, Les Loges-En-Josas, France
201 schema:name Air Liquide Research and Development, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, 78350, Les Loges-En-Josas, France
202 rdf:type schema:Organization
203 grid-institutes:grid.4444.0 schema:alternateName CNRS, CEMHTI UPR 3079, Université d’Orléans, Avenue de la recherche scientifique, 45071, Orléans, France
204 schema:name CNRS, CEMHTI UPR 3079, Université d’Orléans, Avenue de la recherche scientifique, 45071, Orléans, France
205 rdf:type schema:Organization
206 grid-institutes:grid.463918.1 schema:alternateName GREMI, UMR 7344, Université d’Orléans, CNRS, 63 avenue de Lattre de Tassigny, 18020, Bourges Cedex, France
207 schema:name GREMI, UMR 7344, Université d’Orléans, CNRS, 63 avenue de Lattre de Tassigny, 18020, Bourges Cedex, France
208 rdf:type schema:Organization
209 grid-institutes:grid.5522.0 schema:alternateName Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
210 schema:name Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...