Effect of TiO2 on Various Regions of Active Electrode on Surface Dielectric Barrier Discharge in Air View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06-17

AUTHORS

S. Pekárek, J. Mikeš, I. Beshajová Pelikánová, F. Krčma, P. Dzik

ABSTRACT

For surface dielectric barrier discharge in air, we examined the effect of titanium dioxide on various regions of the active electrode on the electrical parameters of discharge, on its emission spectra, and for demonstration of the obtained results also on the concentration of ozone produced by the discharge. We used the active electrode in the form of nine interconnected parallel strips and a square counter electrode. The TiO2 layer covered either only the strips, the region between the strips, or all active electrode. As reference discharge we used the discharge without any layer of TiO2. We found that direct application potential has a version when the strips of the active electrode are covered with a layer of TiO2, because the concentration of ozone produced by the discharge is the highest in all investigated cases. This finding could therefore be used for construction of more efficient ozone generators. More... »

PAGES

1187-1200

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11090-016-9723-4

DOI

http://dx.doi.org/10.1007/s11090-016-9723-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003578423


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "FEE, Czech Technical University in Prague, Prague, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.6652.7", 
          "name": [
            "FEE, Czech Technical University in Prague, Prague, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pek\u00e1rek", 
        "givenName": "S.", 
        "id": "sg:person.010227525374.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010227525374.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FEE, Czech Technical University in Prague, Prague, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.6652.7", 
          "name": [
            "FEE, Czech Technical University in Prague, Prague, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mike\u0161", 
        "givenName": "J.", 
        "id": "sg:person.016561265203.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561265203.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FEE, Czech Technical University in Prague, Prague, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.6652.7", 
          "name": [
            "FEE, Czech Technical University in Prague, Prague, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beshajov\u00e1 Pelik\u00e1nov\u00e1", 
        "givenName": "I.", 
        "id": "sg:person.016200722365.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016200722365.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FCH, Brno University of Technology, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4994.0", 
          "name": [
            "FCH, Brno University of Technology, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kr\u010dma", 
        "givenName": "F.", 
        "id": "sg:person.012406140373.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406140373.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FCH, Brno University of Technology, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4994.0", 
          "name": [
            "FCH, Brno University of Technology, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dzik", 
        "givenName": "P.", 
        "id": "sg:person.0611016441.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611016441.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11090-015-9662-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047273716", 
          "https://doi.org/10.1007/s11090-015-9662-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2013-30723-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025974335", 
          "https://doi.org/10.1140/epjd/e2013-30723-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2014-50393-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007084693", 
          "https://doi.org/10.1140/epjd/e2014-50393-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2008-00216-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017112736", 
          "https://doi.org/10.1140/epjd/e2008-00216-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11090-014-9527-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042132208", 
          "https://doi.org/10.1007/s11090-014-9527-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06-17", 
    "datePublishedReg": "2016-06-17", 
    "description": "For surface dielectric barrier discharge in air, we examined the effect of titanium dioxide on various regions of the active electrode on the electrical parameters of discharge, on its emission spectra, and for demonstration of the obtained results also on the concentration of ozone produced by the discharge. We used the active electrode in the form of nine interconnected parallel strips and a square counter electrode. The TiO2 layer covered either only the strips, the region between the strips, or all active electrode. As reference discharge we used the discharge without any layer of TiO2. We found that direct application potential has a version when the strips of the active electrode are covered with a layer of TiO2, because the concentration of ozone produced by the discharge is the highest in all investigated cases. This finding could therefore be used for construction of more efficient ozone generators.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11090-016-9723-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1124016", 
        "issn": [
          "0272-4324", 
          "1572-8986"
        ], 
        "name": "Plasma Chemistry and Plasma Processing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "dielectric barrier discharge", 
      "layer of TiO2", 
      "surface dielectric barrier discharge", 
      "concentration of ozone", 
      "barrier discharge", 
      "active electrode", 
      "counter electrode", 
      "effect of TiO2", 
      "titanium dioxide", 
      "TiO2 layer", 
      "electrode", 
      "TiO2", 
      "direct application potential", 
      "emission spectra", 
      "application potential", 
      "ozone generator", 
      "ozone", 
      "layer", 
      "air", 
      "dioxide", 
      "concentration", 
      "spectra", 
      "electrical parameters", 
      "discharge", 
      "potential", 
      "reference discharge", 
      "effect", 
      "parallel strips", 
      "parameters", 
      "form", 
      "strips", 
      "generator", 
      "region", 
      "results", 
      "construction", 
      "demonstration", 
      "cases", 
      "version", 
      "findings", 
      "square counter electrode", 
      "efficient ozone generators"
    ], 
    "name": "Effect of TiO2 on Various Regions of Active Electrode on Surface Dielectric Barrier Discharge in Air", 
    "pagination": "1187-1200", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003578423"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11090-016-9723-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11090-016-9723-4", 
      "https://app.dimensions.ai/details/publication/pub.1003578423"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_698.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11090-016-9723-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11090-016-9723-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11090-016-9723-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11090-016-9723-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11090-016-9723-4'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      22 PREDICATES      73 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11090-016-9723-4 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:09
4 anzsrc-for:0904
5 schema:author N05e84d87f065405f979b270edf1f6668
6 schema:citation sg:pub.10.1007/s11090-014-9527-3
7 sg:pub.10.1007/s11090-015-9662-5
8 sg:pub.10.1140/epjd/e2008-00216-x
9 sg:pub.10.1140/epjd/e2013-30723-4
10 sg:pub.10.1140/epjd/e2014-50393-x
11 schema:datePublished 2016-06-17
12 schema:datePublishedReg 2016-06-17
13 schema:description For surface dielectric barrier discharge in air, we examined the effect of titanium dioxide on various regions of the active electrode on the electrical parameters of discharge, on its emission spectra, and for demonstration of the obtained results also on the concentration of ozone produced by the discharge. We used the active electrode in the form of nine interconnected parallel strips and a square counter electrode. The TiO2 layer covered either only the strips, the region between the strips, or all active electrode. As reference discharge we used the discharge without any layer of TiO2. We found that direct application potential has a version when the strips of the active electrode are covered with a layer of TiO2, because the concentration of ozone produced by the discharge is the highest in all investigated cases. This finding could therefore be used for construction of more efficient ozone generators.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N0a7b45aa73514da09d6878276cfd2a11
18 Nbd9ef75046f247ddae2a6e447aedfe63
19 sg:journal.1124016
20 schema:keywords TiO2
21 TiO2 layer
22 active electrode
23 air
24 application potential
25 barrier discharge
26 cases
27 concentration
28 concentration of ozone
29 construction
30 counter electrode
31 demonstration
32 dielectric barrier discharge
33 dioxide
34 direct application potential
35 discharge
36 effect
37 effect of TiO2
38 efficient ozone generators
39 electrical parameters
40 electrode
41 emission spectra
42 findings
43 form
44 generator
45 layer
46 layer of TiO2
47 ozone
48 ozone generator
49 parallel strips
50 parameters
51 potential
52 reference discharge
53 region
54 results
55 spectra
56 square counter electrode
57 strips
58 surface dielectric barrier discharge
59 titanium dioxide
60 version
61 schema:name Effect of TiO2 on Various Regions of Active Electrode on Surface Dielectric Barrier Discharge in Air
62 schema:pagination 1187-1200
63 schema:productId N005a3cc9171b4c488ab121143dda6177
64 Nb0700c2d0a8a43de98711cb04d606a5b
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003578423
66 https://doi.org/10.1007/s11090-016-9723-4
67 schema:sdDatePublished 2021-11-01T18:27
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N906f4f5f6e7643b3aa3c9f5cdf387acc
70 schema:url https://doi.org/10.1007/s11090-016-9723-4
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N005a3cc9171b4c488ab121143dda6177 schema:name doi
75 schema:value 10.1007/s11090-016-9723-4
76 rdf:type schema:PropertyValue
77 N05e84d87f065405f979b270edf1f6668 rdf:first sg:person.010227525374.68
78 rdf:rest N2d6290666d7e4d879494e85cbb0b6b2e
79 N0a7b45aa73514da09d6878276cfd2a11 schema:issueNumber 5
80 rdf:type schema:PublicationIssue
81 N2d6290666d7e4d879494e85cbb0b6b2e rdf:first sg:person.016561265203.64
82 rdf:rest N439fa401f6134eaea7f2242dd5d78138
83 N439fa401f6134eaea7f2242dd5d78138 rdf:first sg:person.016200722365.01
84 rdf:rest N83c5514d95a94fd6a678f2bf3e0532d2
85 N8394b6c2e16a49a88d7407538b582b55 rdf:first sg:person.0611016441.35
86 rdf:rest rdf:nil
87 N83c5514d95a94fd6a678f2bf3e0532d2 rdf:first sg:person.012406140373.54
88 rdf:rest N8394b6c2e16a49a88d7407538b582b55
89 N906f4f5f6e7643b3aa3c9f5cdf387acc schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nb0700c2d0a8a43de98711cb04d606a5b schema:name dimensions_id
92 schema:value pub.1003578423
93 rdf:type schema:PropertyValue
94 Nbd9ef75046f247ddae2a6e447aedfe63 schema:volumeNumber 36
95 rdf:type schema:PublicationVolume
96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
100 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
101 rdf:type schema:DefinedTerm
102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
103 schema:name Engineering
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
106 schema:name Chemical Engineering
107 rdf:type schema:DefinedTerm
108 sg:journal.1124016 schema:issn 0272-4324
109 1572-8986
110 schema:name Plasma Chemistry and Plasma Processing
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.010227525374.68 schema:affiliation grid-institutes:grid.6652.7
114 schema:familyName Pekárek
115 schema:givenName S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010227525374.68
117 rdf:type schema:Person
118 sg:person.012406140373.54 schema:affiliation grid-institutes:grid.4994.0
119 schema:familyName Krčma
120 schema:givenName F.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012406140373.54
122 rdf:type schema:Person
123 sg:person.016200722365.01 schema:affiliation grid-institutes:grid.6652.7
124 schema:familyName Beshajová Pelikánová
125 schema:givenName I.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016200722365.01
127 rdf:type schema:Person
128 sg:person.016561265203.64 schema:affiliation grid-institutes:grid.6652.7
129 schema:familyName Mikeš
130 schema:givenName J.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561265203.64
132 rdf:type schema:Person
133 sg:person.0611016441.35 schema:affiliation grid-institutes:grid.4994.0
134 schema:familyName Dzik
135 schema:givenName P.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611016441.35
137 rdf:type schema:Person
138 sg:pub.10.1007/s11090-014-9527-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042132208
139 https://doi.org/10.1007/s11090-014-9527-3
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s11090-015-9662-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047273716
142 https://doi.org/10.1007/s11090-015-9662-5
143 rdf:type schema:CreativeWork
144 sg:pub.10.1140/epjd/e2008-00216-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017112736
145 https://doi.org/10.1140/epjd/e2008-00216-x
146 rdf:type schema:CreativeWork
147 sg:pub.10.1140/epjd/e2013-30723-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025974335
148 https://doi.org/10.1140/epjd/e2013-30723-4
149 rdf:type schema:CreativeWork
150 sg:pub.10.1140/epjd/e2014-50393-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007084693
151 https://doi.org/10.1140/epjd/e2014-50393-x
152 rdf:type schema:CreativeWork
153 grid-institutes:grid.4994.0 schema:alternateName FCH, Brno University of Technology, Brno, Czech Republic
154 schema:name FCH, Brno University of Technology, Brno, Czech Republic
155 rdf:type schema:Organization
156 grid-institutes:grid.6652.7 schema:alternateName FEE, Czech Technical University in Prague, Prague, Czech Republic
157 schema:name FEE, Czech Technical University in Prague, Prague, Czech Republic
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...