Optimal absorber thickness in long-wave multiple-stage detector View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Klaudia Hackiewicz, Piotr Martyniuk, Jarosław Rutkowski

ABSTRACT

The detectivity characteristics of interband cascade infrared type-II superlattice detectors for long-wave infrared detection (λcut-off = 8 μm at room temperature) are discussed. We present comparison of two superlattices: InAs/GaSb and InAs/InAsSb, assuming the characteristic parameters—absorption coefficients α and carrier lifetimes τ published in literature. Dependence of the Johnson-noise limited detectivity on the absorber thickness for a different number of stages is reported. Higher detectivity D* value can be achieved by increasing the carrier lifetime. However, for detectors based on type-II InAs/GaSb superlattice increasing the carrier lifetime up to 25 ns leads to a situation in which one stage is preferred, i.e. for detector with a single absorber, we obtain the highest detectivity value. In the case of InAs/InAsSb material, the situation is similar for τ ≥ 80 ns. We have shown that the optimal absorber thickness at which the highest detectivity values are obtained depends not only on the absorption coefficient α and the number of stages NS, but also on the carrier diffusion length L. According to a calculations, cascade detectors based on Ga-free material should have much higher optimal absorber thicknesses than materials based on InAs/GaSb. More... »

PAGES

57

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11082-019-1771-6

DOI

http://dx.doi.org/10.1007/s11082-019-1771-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112039851


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Military University of Technology in Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.69474.38", 
          "name": [
            "Institute of Applied Physics, Military University of Technology, 2 Urbanowicza Str., 00\u2013908, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hackiewicz", 
        "givenName": "Klaudia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Military University of Technology in Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.69474.38", 
          "name": [
            "Institute of Applied Physics, Military University of Technology, 2 Urbanowicza Str., 00\u2013908, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martyniuk", 
        "givenName": "Piotr", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Military University of Technology in Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.69474.38", 
          "name": [
            "Institute of Applied Physics, Military University of Technology, 2 Urbanowicza Str., 00\u2013908, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rutkowski", 
        "givenName": "Jaros\u0142aw", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.4953035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007281467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.883625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012759566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/30/10/105029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043766605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4967915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044298730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2003.08.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046835725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.819641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051138277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19850321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056769530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2800808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057868259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3327415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057937102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3476352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057958339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3529458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057968680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3584853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057979487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.360422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057983420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3671398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057996600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4820394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058082087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.2010.2103049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061307633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.3672028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062175993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2272817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091222032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4989382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091357157"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "The detectivity characteristics of interband cascade infrared type-II superlattice detectors for long-wave infrared detection (\u03bbcut-off = 8 \u03bcm at room temperature) are discussed. We present comparison of two superlattices: InAs/GaSb and InAs/InAsSb, assuming the characteristic parameters\u2014absorption coefficients \u03b1 and carrier lifetimes \u03c4 published in literature. Dependence of the Johnson-noise limited detectivity on the absorber thickness for a different number of stages is reported. Higher detectivity D* value can be achieved by increasing the carrier lifetime. However, for detectors based on type-II InAs/GaSb superlattice increasing the carrier lifetime up to 25 ns leads to a situation in which one stage is preferred, i.e. for detector with a single absorber, we obtain the highest detectivity value. In the case of InAs/InAsSb material, the situation is similar for \u03c4 \u2265 80 ns. We have shown that the optimal absorber thickness at which the highest detectivity values are obtained depends not only on the absorption coefficient \u03b1 and the number of stages NS, but also on the carrier diffusion length L. According to a calculations, cascade detectors based on Ga-free material should have much higher optimal absorber thicknesses than materials based on InAs/GaSb.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11082-019-1771-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7392939", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053336", 
        "issn": [
          "0306-8919", 
          "1572-817X"
        ], 
        "name": "Optical and Quantum Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Optimal absorber thickness in long-wave multiple-stage detector", 
    "pagination": "57", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "73afd230016798b89bdd6bcd31df406556716569ecbefed491f93a1f347b6d1e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11082-019-1771-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112039851"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11082-019-1771-6", 
      "https://app.dimensions.ai/details/publication/pub.1112039851"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89804_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11082-019-1771-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11082-019-1771-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11082-019-1771-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11082-019-1771-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11082-019-1771-6'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11082-019-1771-6 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N633a453880cc46aa9d90c7c138fc0119
4 schema:citation https://doi.org/10.1016/j.physe.2003.08.061
5 https://doi.org/10.1049/el:19850321
6 https://doi.org/10.1063/1.2800808
7 https://doi.org/10.1063/1.3327415
8 https://doi.org/10.1063/1.3476352
9 https://doi.org/10.1063/1.3529458
10 https://doi.org/10.1063/1.3584853
11 https://doi.org/10.1063/1.360422
12 https://doi.org/10.1063/1.3671398
13 https://doi.org/10.1063/1.4820394
14 https://doi.org/10.1063/1.4953035
15 https://doi.org/10.1063/1.4967915
16 https://doi.org/10.1063/1.4989382
17 https://doi.org/10.1088/0268-1242/30/10/105029
18 https://doi.org/10.1109/jqe.2010.2103049
19 https://doi.org/10.1116/1.3672028
20 https://doi.org/10.1117/12.2272817
21 https://doi.org/10.1117/12.819641
22 https://doi.org/10.1117/12.883625
23 schema:datePublished 2019-02
24 schema:datePublishedReg 2019-02-01
25 schema:description The detectivity characteristics of interband cascade infrared type-II superlattice detectors for long-wave infrared detection (λcut-off = 8 μm at room temperature) are discussed. We present comparison of two superlattices: InAs/GaSb and InAs/InAsSb, assuming the characteristic parameters—absorption coefficients α and carrier lifetimes τ published in literature. Dependence of the Johnson-noise limited detectivity on the absorber thickness for a different number of stages is reported. Higher detectivity D* value can be achieved by increasing the carrier lifetime. However, for detectors based on type-II InAs/GaSb superlattice increasing the carrier lifetime up to 25 ns leads to a situation in which one stage is preferred, i.e. for detector with a single absorber, we obtain the highest detectivity value. In the case of InAs/InAsSb material, the situation is similar for τ ≥ 80 ns. We have shown that the optimal absorber thickness at which the highest detectivity values are obtained depends not only on the absorption coefficient α and the number of stages NS, but also on the carrier diffusion length L. According to a calculations, cascade detectors based on Ga-free material should have much higher optimal absorber thicknesses than materials based on InAs/GaSb.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N7510fdc5ce6d4b4e9939e282daae4da2
30 N93552b83e12f4578bea7ccb79913b4cc
31 sg:journal.1053336
32 schema:name Optimal absorber thickness in long-wave multiple-stage detector
33 schema:pagination 57
34 schema:productId N540407c6130441f0be5c6e291f855676
35 N998c548e959c4093b38eb2d470ce8d43
36 Nfa76c61a718d4dcd886de31be9fb62ba
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112039851
38 https://doi.org/10.1007/s11082-019-1771-6
39 schema:sdDatePublished 2019-04-11T09:56
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N799a440210ec4d42b0c768cd1ea24189
42 schema:url https://link.springer.com/10.1007%2Fs11082-019-1771-6
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N22c72a2a31694f71868c5b105803afb9 schema:affiliation https://www.grid.ac/institutes/grid.69474.38
47 schema:familyName Rutkowski
48 schema:givenName Jarosław
49 rdf:type schema:Person
50 N540407c6130441f0be5c6e291f855676 schema:name readcube_id
51 schema:value 73afd230016798b89bdd6bcd31df406556716569ecbefed491f93a1f347b6d1e
52 rdf:type schema:PropertyValue
53 N633a453880cc46aa9d90c7c138fc0119 rdf:first N7366bd9d01a64cd3bffbfe92eb513c7f
54 rdf:rest N99be8fecc75d40019594034837bdc4ac
55 N7366bd9d01a64cd3bffbfe92eb513c7f schema:affiliation https://www.grid.ac/institutes/grid.69474.38
56 schema:familyName Hackiewicz
57 schema:givenName Klaudia
58 rdf:type schema:Person
59 N7510fdc5ce6d4b4e9939e282daae4da2 schema:issueNumber 2
60 rdf:type schema:PublicationIssue
61 N799a440210ec4d42b0c768cd1ea24189 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N8812bbd39d3645ba9bc5eb7b819d9464 rdf:first N22c72a2a31694f71868c5b105803afb9
64 rdf:rest rdf:nil
65 N93552b83e12f4578bea7ccb79913b4cc schema:volumeNumber 51
66 rdf:type schema:PublicationVolume
67 N998c548e959c4093b38eb2d470ce8d43 schema:name dimensions_id
68 schema:value pub.1112039851
69 rdf:type schema:PropertyValue
70 N99be8fecc75d40019594034837bdc4ac rdf:first Nb39db9ac5f114f2b8d942d2d1d9c88f5
71 rdf:rest N8812bbd39d3645ba9bc5eb7b819d9464
72 Nb39db9ac5f114f2b8d942d2d1d9c88f5 schema:affiliation https://www.grid.ac/institutes/grid.69474.38
73 schema:familyName Martyniuk
74 schema:givenName Piotr
75 rdf:type schema:Person
76 Nfa76c61a718d4dcd886de31be9fb62ba schema:name doi
77 schema:value 10.1007/s11082-019-1771-6
78 rdf:type schema:PropertyValue
79 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
80 schema:name Physical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
83 schema:name Other Physical Sciences
84 rdf:type schema:DefinedTerm
85 sg:grant.7392939 http://pending.schema.org/fundedItem sg:pub.10.1007/s11082-019-1771-6
86 rdf:type schema:MonetaryGrant
87 sg:journal.1053336 schema:issn 0306-8919
88 1572-817X
89 schema:name Optical and Quantum Electronics
90 rdf:type schema:Periodical
91 https://doi.org/10.1016/j.physe.2003.08.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046835725
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1049/el:19850321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056769530
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.2800808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057868259
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1063/1.3327415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057937102
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1063/1.3476352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057958339
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.3529458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057968680
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.3584853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057979487
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1063/1.360422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057983420
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.3671398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057996600
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1063/1.4820394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058082087
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.4953035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007281467
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.4967915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044298730
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.4989382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091357157
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0268-1242/30/10/105029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043766605
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/jqe.2010.2103049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061307633
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1116/1.3672028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062175993
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1117/12.2272817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091222032
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1117/12.819641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051138277
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1117/12.883625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012759566
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.69474.38 schema:alternateName Military University of Technology in Warsaw
130 schema:name Institute of Applied Physics, Military University of Technology, 2 Urbanowicza Str., 00–908, Warsaw, Poland
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...