Influence of bath temperatures on physical and electrical properties of potentiostatically deposited Cu2O thin films for heterojunction solar cell applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-12

AUTHORS

K. P. Ganesan, G. Sivakumar, N. Anandhan, T. Marimuthu, R. Panneerselvam, A. Amali Roselin

ABSTRACT

In the present work, the influence of bath temperatures on structural, morphological, vibrational, optical, electrical and photo response properties of the electrochemically deposited cuprous oxide (Cu2O) thin films on fluorine doped tin oxide substrate is extensively investigated with the help of X-ray diffraction (XRD), scanning electron microscopy (SEM), Micro Raman spectroscopy, photo luminescence (PL) spectroscopy, UV–visible spectroscopy, LCR measurement, Keithley 4200 semiconductor characterization system respectively. XRD patterns reveal that the deposited Cu2O films have cubic structure grown along the preferential (111) orientation and the film deposited at 40 °C shows better crystalline nature when compared at 55 and 70 °C. The micro structural properties of films such as crystallite size (D), dislocation density (δ), micro strain (ε) and stacking fault probability (α) were calculated and discussed in detail. SEM displays a well-defined three side pyramid shaped morphology for the film deposited at 40 °C. Micro Raman and PL spectra reveal the film deposited at 40 °C by being better crystalline at a higher acceptor concentration. UV–Visible study shows that the optical energy band gap increases from 2.05 to 2.17 eV with an increase in bath temperature from 40 to 70 °C. The frequency-temperature dependence of impedance analysis shows a higher electrical conductivity for a film deposited at 40 °C compared to other bath temperatures. I-V measurement illustrates a good photoconductivity response for Cu2O thin film deposited at 40 °C compared to films deposited at 55 and 70 °C. More... »

PAGES

37

References to SciGraph publications

  • 2011-01-14. Preparation of nanocrystalline Cu2O thin film by pulsed laser deposition in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2018-01-27. Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+ doping in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2018-06-25. Effect of deposition temperature on key optoelectronic properties of electrodeposited cuprous oxide thin films in OPTICAL AND QUANTUM ELECTRONICS
  • 2016-09-03. Electrodeposition and characterization of pH transformed Cu2O thin films for electrochemical sensor in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS
  • 2014-04. Study of electrical properties of polyvinylpyrrolidone/polyacrylamide blend thin films in BULLETIN OF MATERIALS SCIENCE
  • 2014-10-07. Structural, Ferroelectric, and Electrical Properties of NiTiO3 Ceramic in JOURNAL OF ELECTRONIC MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11082-019-1745-8

    DOI

    http://dx.doi.org/10.1007/s11082-019-1745-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111390057


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Saiva Bhanu Kshatriya College, 626101, Aruppukottai, Tamil Nadu, India", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Advanced Materials and Thin Film Laboratory, Department of Physics, Alagappa University, 630003, Karaikudi, Tamil Nadu, India", 
                "Department of Physics, Saiva Bhanu Kshatriya College, 626101, Aruppukottai, Tamil Nadu, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ganesan", 
            "givenName": "K. P.", 
            "id": "sg:person.011362247666.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011362247666.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics-CISL, Annamalai University, Annamalai Nagar, 608002, Chidambaram, Tamil Nadu, India", 
              "id": "http://www.grid.ac/institutes/grid.411408.8", 
              "name": [
                "Department of Physics-CISL, Annamalai University, Annamalai Nagar, 608002, Chidambaram, Tamil Nadu, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sivakumar", 
            "givenName": "G.", 
            "id": "sg:person.016575300563.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016575300563.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Advanced Materials and Thin Film Laboratory, Department of Physics, Alagappa University, 630003, Karaikudi, Tamil Nadu, India", 
              "id": "http://www.grid.ac/institutes/grid.411312.4", 
              "name": [
                "Advanced Materials and Thin Film Laboratory, Department of Physics, Alagappa University, 630003, Karaikudi, Tamil Nadu, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anandhan", 
            "givenName": "N.", 
            "id": "sg:person.016560152532.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016560152532.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Advanced Materials and Thin Film Laboratory, Department of Physics, Alagappa University, 630003, Karaikudi, Tamil Nadu, India", 
              "id": "http://www.grid.ac/institutes/grid.411312.4", 
              "name": [
                "Advanced Materials and Thin Film Laboratory, Department of Physics, Alagappa University, 630003, Karaikudi, Tamil Nadu, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marimuthu", 
            "givenName": "T.", 
            "id": "sg:person.07660461533.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07660461533.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Advanced Materials and Thin Film Laboratory, Department of Physics, Alagappa University, 630003, Karaikudi, Tamil Nadu, India", 
              "id": "http://www.grid.ac/institutes/grid.411312.4", 
              "name": [
                "Advanced Materials and Thin Film Laboratory, Department of Physics, Alagappa University, 630003, Karaikudi, Tamil Nadu, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Panneerselvam", 
            "givenName": "R.", 
            "id": "sg:person.011024000074.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011024000074.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Advanced Materials and Thin Film Laboratory, Department of Physics, Alagappa University, 630003, Karaikudi, Tamil Nadu, India", 
              "id": "http://www.grid.ac/institutes/grid.411312.4", 
              "name": [
                "Advanced Materials and Thin Film Laboratory, Department of Physics, Alagappa University, 630003, Karaikudi, Tamil Nadu, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amali Roselin", 
            "givenName": "A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11082-018-1531-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105106433", 
              "https://doi.org/10.1007/s11082-018-1531-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-011-0294-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024049290", 
              "https://doi.org/10.1007/s10854-011-0294-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-018-8626-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100679311", 
              "https://doi.org/10.1007/s10854-018-8626-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11664-014-3426-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014036444", 
              "https://doi.org/10.1007/s11664-014-3426-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12034-014-0639-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028060621", 
              "https://doi.org/10.1007/s12034-014-0639-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10854-016-5672-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048303918", 
              "https://doi.org/10.1007/s10854-016-5672-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-12", 
        "datePublishedReg": "2019-01-12", 
        "description": "In the present work, the influence of bath temperatures on structural, morphological, vibrational, optical, electrical and photo response properties of the electrochemically deposited cuprous oxide (Cu2O) thin films on fluorine doped tin oxide substrate is extensively investigated with the help of X-ray diffraction (XRD), scanning electron microscopy (SEM), Micro Raman spectroscopy, photo luminescence (PL) spectroscopy, UV\u2013visible spectroscopy, LCR measurement, Keithley 4200 semiconductor characterization system respectively. XRD patterns reveal that the deposited Cu2O films have cubic structure grown along the preferential (111) orientation and the film deposited at 40\u00a0\u00b0C shows better crystalline nature when compared at 55 and 70\u00a0\u00b0C. The micro structural properties of films such as crystallite size (D), dislocation density (\u03b4), micro strain (\u03b5) and stacking fault probability (\u03b1) were calculated and discussed in detail. SEM displays a well-defined three side pyramid shaped morphology for the film deposited at 40\u00a0\u00b0C. Micro Raman and PL spectra reveal the film deposited at 40\u00a0\u00b0C by being better crystalline at a higher acceptor concentration. UV\u2013Visible study shows that the optical energy band gap increases from 2.05 to 2.17\u00a0eV with an increase in bath temperature from 40 to 70\u00a0\u00b0C. The frequency-temperature dependence of impedance analysis shows a higher electrical conductivity for a film deposited at 40\u00a0\u00b0C compared to other bath temperatures. I-V measurement illustrates a good photoconductivity response for Cu2O thin film deposited at 40\u00a0\u00b0C compared to films deposited at 55 and 70\u00a0\u00b0C.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11082-019-1745-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053336", 
            "issn": [
              "0306-8919", 
              "1572-817X"
            ], 
            "name": "Optical and Quantum Electronics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "51"
          }
        ], 
        "keywords": [
          "Cu2O thin films", 
          "thin films", 
          "bath temperature", 
          "heterojunction solar cell applications", 
          "cuprous oxide thin films", 
          "good photoconductivity response", 
          "Keithley 4200 semiconductor characterization system", 
          "micro structural properties", 
          "oxide thin films", 
          "high electrical conductivity", 
          "solar cell applications", 
          "tin oxide substrates", 
          "photo response properties", 
          "semiconductor characterization system", 
          "energy band gap increases", 
          "oxide substrates", 
          "Cu2O films", 
          "micro Raman spectroscopy", 
          "micro strain", 
          "electrical properties", 
          "cell applications", 
          "dislocation density", 
          "electrical conductivity", 
          "band gap increases", 
          "photo luminescence spectroscopy", 
          "characterization system", 
          "LCR measurements", 
          "preferential orientation", 
          "micro Raman", 
          "films", 
          "frequency-temperature dependence", 
          "good crystalline", 
          "photoconductivity response", 
          "cubic structure", 
          "crystallite size", 
          "XRD patterns", 
          "high acceptor concentrations", 
          "ray diffraction", 
          "electron microscopy", 
          "gap increases", 
          "temperature", 
          "structural properties", 
          "present work", 
          "crystalline nature", 
          "good crystalline nature", 
          "UV-visible spectroscopy", 
          "fault probability", 
          "Raman spectroscopy", 
          "properties", 
          "impedance analysis", 
          "acceptor concentration", 
          "conductivity", 
          "SEM", 
          "UV-visible studies", 
          "measurements", 
          "influence", 
          "PL spectra", 
          "spectroscopy", 
          "diffraction", 
          "substrate", 
          "crystalline", 
          "microscopy", 
          "morphology", 
          "density", 
          "applications", 
          "fluorine", 
          "orientation", 
          "structure", 
          "increase", 
          "work", 
          "size", 
          "dependence", 
          "system", 
          "Raman", 
          "detail", 
          "luminescence spectroscopy", 
          "strains", 
          "pyramid", 
          "help", 
          "concentration", 
          "response properties", 
          "analysis", 
          "spectra", 
          "nature", 
          "study", 
          "response", 
          "patterns", 
          "probability", 
          "side pyramid", 
          "optical energy band gap increases"
        ], 
        "name": "Influence of bath temperatures on physical and electrical properties of potentiostatically deposited Cu2O thin films for heterojunction solar cell applications", 
        "pagination": "37", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111390057"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11082-019-1745-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11082-019-1745-8", 
          "https://app.dimensions.ai/details/publication/pub.1111390057"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_818.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11082-019-1745-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11082-019-1745-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11082-019-1745-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11082-019-1745-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11082-019-1745-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    221 TRIPLES      22 PREDICATES      123 URIs      107 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11082-019-1745-8 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 anzsrc-for:09
    4 anzsrc-for:0912
    5 schema:author Nb72d732f82534d368be33982df769bad
    6 schema:citation sg:pub.10.1007/s10854-011-0294-0
    7 sg:pub.10.1007/s10854-016-5672-1
    8 sg:pub.10.1007/s10854-018-8626-y
    9 sg:pub.10.1007/s11082-018-1531-z
    10 sg:pub.10.1007/s11664-014-3426-5
    11 sg:pub.10.1007/s12034-014-0639-4
    12 schema:datePublished 2019-01-12
    13 schema:datePublishedReg 2019-01-12
    14 schema:description In the present work, the influence of bath temperatures on structural, morphological, vibrational, optical, electrical and photo response properties of the electrochemically deposited cuprous oxide (Cu2O) thin films on fluorine doped tin oxide substrate is extensively investigated with the help of X-ray diffraction (XRD), scanning electron microscopy (SEM), Micro Raman spectroscopy, photo luminescence (PL) spectroscopy, UV–visible spectroscopy, LCR measurement, Keithley 4200 semiconductor characterization system respectively. XRD patterns reveal that the deposited Cu2O films have cubic structure grown along the preferential (111) orientation and the film deposited at 40 °C shows better crystalline nature when compared at 55 and 70 °C. The micro structural properties of films such as crystallite size (D), dislocation density (δ), micro strain (ε) and stacking fault probability (α) were calculated and discussed in detail. SEM displays a well-defined three side pyramid shaped morphology for the film deposited at 40 °C. Micro Raman and PL spectra reveal the film deposited at 40 °C by being better crystalline at a higher acceptor concentration. UV–Visible study shows that the optical energy band gap increases from 2.05 to 2.17 eV with an increase in bath temperature from 40 to 70 °C. The frequency-temperature dependence of impedance analysis shows a higher electrical conductivity for a film deposited at 40 °C compared to other bath temperatures. I-V measurement illustrates a good photoconductivity response for Cu2O thin film deposited at 40 °C compared to films deposited at 55 and 70 °C.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N46142dc70e6742499acdb2110aa82554
    19 Nedd2bf4c575b47ee9bf923962766b769
    20 sg:journal.1053336
    21 schema:keywords Cu2O films
    22 Cu2O thin films
    23 Keithley 4200 semiconductor characterization system
    24 LCR measurements
    25 PL spectra
    26 Raman
    27 Raman spectroscopy
    28 SEM
    29 UV-visible spectroscopy
    30 UV-visible studies
    31 XRD patterns
    32 acceptor concentration
    33 analysis
    34 applications
    35 band gap increases
    36 bath temperature
    37 cell applications
    38 characterization system
    39 concentration
    40 conductivity
    41 crystalline
    42 crystalline nature
    43 crystallite size
    44 cubic structure
    45 cuprous oxide thin films
    46 density
    47 dependence
    48 detail
    49 diffraction
    50 dislocation density
    51 electrical conductivity
    52 electrical properties
    53 electron microscopy
    54 energy band gap increases
    55 fault probability
    56 films
    57 fluorine
    58 frequency-temperature dependence
    59 gap increases
    60 good crystalline
    61 good crystalline nature
    62 good photoconductivity response
    63 help
    64 heterojunction solar cell applications
    65 high acceptor concentrations
    66 high electrical conductivity
    67 impedance analysis
    68 increase
    69 influence
    70 luminescence spectroscopy
    71 measurements
    72 micro Raman
    73 micro Raman spectroscopy
    74 micro strain
    75 micro structural properties
    76 microscopy
    77 morphology
    78 nature
    79 optical energy band gap increases
    80 orientation
    81 oxide substrates
    82 oxide thin films
    83 patterns
    84 photo luminescence spectroscopy
    85 photo response properties
    86 photoconductivity response
    87 preferential orientation
    88 present work
    89 probability
    90 properties
    91 pyramid
    92 ray diffraction
    93 response
    94 response properties
    95 semiconductor characterization system
    96 side pyramid
    97 size
    98 solar cell applications
    99 spectra
    100 spectroscopy
    101 strains
    102 structural properties
    103 structure
    104 study
    105 substrate
    106 system
    107 temperature
    108 thin films
    109 tin oxide substrates
    110 work
    111 schema:name Influence of bath temperatures on physical and electrical properties of potentiostatically deposited Cu2O thin films for heterojunction solar cell applications
    112 schema:pagination 37
    113 schema:productId N6e09ac7715c842a0a50e2e76788f0a8d
    114 N7f8da0713144421abe1fbb67baf6314c
    115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111390057
    116 https://doi.org/10.1007/s11082-019-1745-8
    117 schema:sdDatePublished 2021-11-01T18:35
    118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    119 schema:sdPublisher N7a661056d30243a38effff669ad43de4
    120 schema:url https://doi.org/10.1007/s11082-019-1745-8
    121 sgo:license sg:explorer/license/
    122 sgo:sdDataset articles
    123 rdf:type schema:ScholarlyArticle
    124 N12da43c23e9249678deb88da152ac9fc schema:affiliation grid-institutes:grid.411312.4
    125 schema:familyName Amali Roselin
    126 schema:givenName A.
    127 rdf:type schema:Person
    128 N177ca20a975c490cacc08367dd7c3f7d rdf:first sg:person.07660461533.85
    129 rdf:rest N3592d538fc5a4aeea014911abca1da19
    130 N3592d538fc5a4aeea014911abca1da19 rdf:first sg:person.011024000074.75
    131 rdf:rest Nd7f002fcd657416db78042d0f9b93423
    132 N46142dc70e6742499acdb2110aa82554 schema:issueNumber 1
    133 rdf:type schema:PublicationIssue
    134 N6e09ac7715c842a0a50e2e76788f0a8d schema:name dimensions_id
    135 schema:value pub.1111390057
    136 rdf:type schema:PropertyValue
    137 N7a661056d30243a38effff669ad43de4 schema:name Springer Nature - SN SciGraph project
    138 rdf:type schema:Organization
    139 N7f8da0713144421abe1fbb67baf6314c schema:name doi
    140 schema:value 10.1007/s11082-019-1745-8
    141 rdf:type schema:PropertyValue
    142 N803abaec762e46db8b19c50bd313cf74 rdf:first sg:person.016560152532.49
    143 rdf:rest N177ca20a975c490cacc08367dd7c3f7d
    144 Nb25080d399c24f408c4b9bbd5c386035 rdf:first sg:person.016575300563.92
    145 rdf:rest N803abaec762e46db8b19c50bd313cf74
    146 Nb72d732f82534d368be33982df769bad rdf:first sg:person.011362247666.10
    147 rdf:rest Nb25080d399c24f408c4b9bbd5c386035
    148 Nd7f002fcd657416db78042d0f9b93423 rdf:first N12da43c23e9249678deb88da152ac9fc
    149 rdf:rest rdf:nil
    150 Nedd2bf4c575b47ee9bf923962766b769 schema:volumeNumber 51
    151 rdf:type schema:PublicationVolume
    152 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Physical Sciences
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Other Physical Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Engineering
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Materials Engineering
    163 rdf:type schema:DefinedTerm
    164 sg:journal.1053336 schema:issn 0306-8919
    165 1572-817X
    166 schema:name Optical and Quantum Electronics
    167 schema:publisher Springer Nature
    168 rdf:type schema:Periodical
    169 sg:person.011024000074.75 schema:affiliation grid-institutes:grid.411312.4
    170 schema:familyName Panneerselvam
    171 schema:givenName R.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011024000074.75
    173 rdf:type schema:Person
    174 sg:person.011362247666.10 schema:affiliation grid-institutes:None
    175 schema:familyName Ganesan
    176 schema:givenName K. P.
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011362247666.10
    178 rdf:type schema:Person
    179 sg:person.016560152532.49 schema:affiliation grid-institutes:grid.411312.4
    180 schema:familyName Anandhan
    181 schema:givenName N.
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016560152532.49
    183 rdf:type schema:Person
    184 sg:person.016575300563.92 schema:affiliation grid-institutes:grid.411408.8
    185 schema:familyName Sivakumar
    186 schema:givenName G.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016575300563.92
    188 rdf:type schema:Person
    189 sg:person.07660461533.85 schema:affiliation grid-institutes:grid.411312.4
    190 schema:familyName Marimuthu
    191 schema:givenName T.
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07660461533.85
    193 rdf:type schema:Person
    194 sg:pub.10.1007/s10854-011-0294-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024049290
    195 https://doi.org/10.1007/s10854-011-0294-0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s10854-016-5672-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048303918
    198 https://doi.org/10.1007/s10854-016-5672-1
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s10854-018-8626-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1100679311
    201 https://doi.org/10.1007/s10854-018-8626-y
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s11082-018-1531-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1105106433
    204 https://doi.org/10.1007/s11082-018-1531-z
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s11664-014-3426-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014036444
    207 https://doi.org/10.1007/s11664-014-3426-5
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s12034-014-0639-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028060621
    210 https://doi.org/10.1007/s12034-014-0639-4
    211 rdf:type schema:CreativeWork
    212 grid-institutes:None schema:alternateName Department of Physics, Saiva Bhanu Kshatriya College, 626101, Aruppukottai, Tamil Nadu, India
    213 schema:name Advanced Materials and Thin Film Laboratory, Department of Physics, Alagappa University, 630003, Karaikudi, Tamil Nadu, India
    214 Department of Physics, Saiva Bhanu Kshatriya College, 626101, Aruppukottai, Tamil Nadu, India
    215 rdf:type schema:Organization
    216 grid-institutes:grid.411312.4 schema:alternateName Advanced Materials and Thin Film Laboratory, Department of Physics, Alagappa University, 630003, Karaikudi, Tamil Nadu, India
    217 schema:name Advanced Materials and Thin Film Laboratory, Department of Physics, Alagappa University, 630003, Karaikudi, Tamil Nadu, India
    218 rdf:type schema:Organization
    219 grid-institutes:grid.411408.8 schema:alternateName Department of Physics-CISL, Annamalai University, Annamalai Nagar, 608002, Chidambaram, Tamil Nadu, India
    220 schema:name Department of Physics-CISL, Annamalai University, Annamalai Nagar, 608002, Chidambaram, Tamil Nadu, India
    221 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...