Mach–Zehnder interferometers in photonic crystals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-01

AUTHORS

Alejandro Martínez, Pablo Sanchis, Javier Martí

ABSTRACT

Photonic crystal technology allows the creation of optical waveguides with low sharp-bending losses as well as ultra-low group velocity. This last property is particularly interesting to develop highly-compact optical devices based on the controlled modification of the optical phase of the signals traveling through the waveguides. Among these devices, the Mach–Zehnder interferometer acquires fundamental importance because it can be used as a building block of more complex optical devices and functionalities such as optical filters, wavelength demultiplexers, channels interleavers, intensity modulators, switches and optical gates. In this paper, the performance of a Mach–Zehnder interferometer consisting of two coupled-cavity waveguides with different lengths created in a two-dimensional photonic crystal is theoretically analyzed. We also provide simulation results using a finite-difference time-domain code that confirm the theoretical analysis. The main limitations in the performance of the structure are addressed and discussed. More... »

PAGES

77-93

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11082-005-1124-5

DOI

http://dx.doi.org/10.1007/s11082-005-1124-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047545120


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.157927.f", 
          "name": [
            "Valencia Nanophotonics Technology Center, Universidad Polit\u00e9cnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ednez", 
        "givenName": "Alejandro", 
        "id": "sg:person.0734635175.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734635175.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.157927.f", 
          "name": [
            "Valencia Nanophotonics Technology Center, Universidad Polit\u00e9cnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanchis", 
        "givenName": "Pablo", 
        "id": "sg:person.0602702415.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602702415.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.157927.f", 
          "name": [
            "Valencia Nanophotonics Technology Center, Universidad Polit\u00e9cnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ed", 
        "givenName": "Javier", 
        "id": "sg:person.01171153275.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171153275.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1364/oe.8.000173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010552922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010634782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010634782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/383699a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030808177", 
          "https://doi.org/10.1038/383699a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:20010995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056791635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:20030317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056793167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1332821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057695839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1642758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057729164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.5751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060594260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.5751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060594260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.8212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.8212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.r2247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.r2247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.115208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.115208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.3380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.3380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2002.801741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061334586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.18.000162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065169731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.24.000711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.27.001400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065220511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.28.000405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065220860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.28.001903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065221296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.28.001978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065221321"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-01", 
    "datePublishedReg": "2005-01-01", 
    "description": "Photonic crystal technology allows the creation of optical waveguides with low sharp-bending losses as well as ultra-low group velocity. This last property is particularly interesting to develop highly-compact optical devices based on the controlled modification of the optical phase of the signals traveling through the waveguides. Among these devices, the Mach\u2013Zehnder interferometer acquires fundamental importance because it can be used as a building block of more complex optical devices and functionalities such as optical filters, wavelength demultiplexers, channels interleavers, intensity modulators, switches and optical gates. In this paper, the performance of a Mach\u2013Zehnder interferometer consisting of two coupled-cavity waveguides with different lengths created in a two-dimensional photonic crystal is theoretically analyzed. We also provide simulation results using a finite-difference time-domain code that confirm the theoretical analysis. The main limitations in the performance of the structure are addressed and discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11082-005-1124-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053336", 
        "issn": [
          "0306-8919", 
          "1572-817X"
        ], 
        "name": "Optical and Quantum Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Mach\u2013Zehnder interferometers in photonic crystals", 
    "pagination": "77-93", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e27dc242d13330177706df6ef7f30fa164694910d190c611af5f49220ff2e35e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11082-005-1124-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047545120"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11082-005-1124-5", 
      "https://app.dimensions.ai/details/publication/pub.1047545120"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99824_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11082-005-1124-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11082-005-1124-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11082-005-1124-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11082-005-1124-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11082-005-1124-5'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11082-005-1124-5 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Na5e908f81ff94b94b52e03394847f612
4 schema:citation sg:pub.10.1038/383699a0
5 https://doi.org/10.1049/el:20010995
6 https://doi.org/10.1049/el:20030317
7 https://doi.org/10.1063/1.1332821
8 https://doi.org/10.1063/1.1642758
9 https://doi.org/10.1103/physrevb.60.5751
10 https://doi.org/10.1103/physrevb.62.8212
11 https://doi.org/10.1103/physrevb.62.r2247
12 https://doi.org/10.1103/physrevb.67.115208
13 https://doi.org/10.1103/physrevlett.58.2059
14 https://doi.org/10.1103/physrevlett.67.3380
15 https://doi.org/10.1103/physrevlett.77.3787
16 https://doi.org/10.1103/physrevlett.81.1405
17 https://doi.org/10.1109/jstqe.2002.801741
18 https://doi.org/10.1364/josab.18.000162
19 https://doi.org/10.1364/oe.8.000173
20 https://doi.org/10.1364/ol.24.000711
21 https://doi.org/10.1364/ol.27.001400
22 https://doi.org/10.1364/ol.28.000405
23 https://doi.org/10.1364/ol.28.001903
24 https://doi.org/10.1364/ol.28.001978
25 schema:datePublished 2005-01
26 schema:datePublishedReg 2005-01-01
27 schema:description Photonic crystal technology allows the creation of optical waveguides with low sharp-bending losses as well as ultra-low group velocity. This last property is particularly interesting to develop highly-compact optical devices based on the controlled modification of the optical phase of the signals traveling through the waveguides. Among these devices, the Mach–Zehnder interferometer acquires fundamental importance because it can be used as a building block of more complex optical devices and functionalities such as optical filters, wavelength demultiplexers, channels interleavers, intensity modulators, switches and optical gates. In this paper, the performance of a Mach–Zehnder interferometer consisting of two coupled-cavity waveguides with different lengths created in a two-dimensional photonic crystal is theoretically analyzed. We also provide simulation results using a finite-difference time-domain code that confirm the theoretical analysis. The main limitations in the performance of the structure are addressed and discussed.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N7478089f8b1c4cdda6454c336baa065d
32 Nd8e03e7170ba42f3a9e6145442f0df74
33 sg:journal.1053336
34 schema:name Mach–Zehnder interferometers in photonic crystals
35 schema:pagination 77-93
36 schema:productId N355ae221cb0749a3888843d6b884d367
37 N64cff567f54b411782aa41cc4cf9a4bd
38 Na8ceb968dcee4b309d4e86101fb67b8c
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047545120
40 https://doi.org/10.1007/s11082-005-1124-5
41 schema:sdDatePublished 2019-04-11T09:36
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N4f3c2012b8bf476b8cac60a474671cb0
44 schema:url http://link.springer.com/10.1007%2Fs11082-005-1124-5
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N355ae221cb0749a3888843d6b884d367 schema:name doi
49 schema:value 10.1007/s11082-005-1124-5
50 rdf:type schema:PropertyValue
51 N4f3c2012b8bf476b8cac60a474671cb0 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N64cff567f54b411782aa41cc4cf9a4bd schema:name dimensions_id
54 schema:value pub.1047545120
55 rdf:type schema:PropertyValue
56 N664228f08c2f4f288e25503e8a6335e0 rdf:first sg:person.0602702415.99
57 rdf:rest N92a6ec4c761d485ab50ff34d8e5275c4
58 N7478089f8b1c4cdda6454c336baa065d schema:volumeNumber 37
59 rdf:type schema:PublicationVolume
60 N92a6ec4c761d485ab50ff34d8e5275c4 rdf:first sg:person.01171153275.36
61 rdf:rest rdf:nil
62 Na5e908f81ff94b94b52e03394847f612 rdf:first sg:person.0734635175.86
63 rdf:rest N664228f08c2f4f288e25503e8a6335e0
64 Na8ceb968dcee4b309d4e86101fb67b8c schema:name readcube_id
65 schema:value e27dc242d13330177706df6ef7f30fa164694910d190c611af5f49220ff2e35e
66 rdf:type schema:PropertyValue
67 Nd8e03e7170ba42f3a9e6145442f0df74 schema:issueNumber 1-3
68 rdf:type schema:PublicationIssue
69 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
73 schema:name Optical Physics
74 rdf:type schema:DefinedTerm
75 sg:journal.1053336 schema:issn 0306-8919
76 1572-817X
77 schema:name Optical and Quantum Electronics
78 rdf:type schema:Periodical
79 sg:person.01171153275.36 schema:affiliation https://www.grid.ac/institutes/grid.157927.f
80 schema:familyName Martí
81 schema:givenName Javier
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171153275.36
83 rdf:type schema:Person
84 sg:person.0602702415.99 schema:affiliation https://www.grid.ac/institutes/grid.157927.f
85 schema:familyName Sanchis
86 schema:givenName Pablo
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602702415.99
88 rdf:type schema:Person
89 sg:person.0734635175.86 schema:affiliation https://www.grid.ac/institutes/grid.157927.f
90 schema:familyName Martínez
91 schema:givenName Alejandro
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734635175.86
93 rdf:type schema:Person
94 sg:pub.10.1038/383699a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030808177
95 https://doi.org/10.1038/383699a0
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1049/el:20010995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056791635
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1049/el:20030317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056793167
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.1332821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057695839
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.1642758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057729164
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.60.5751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060594260
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.62.8212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060598033
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevb.62.r2247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060598300
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.67.115208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060605976
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.58.2059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042120164
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.67.3380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803690
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.77.3787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814161
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.81.1405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010634782
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/jstqe.2002.801741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061334586
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1364/josab.18.000162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065169731
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1364/oe.8.000173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010552922
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1364/ol.24.000711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218584
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1364/ol.27.001400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220511
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1364/ol.28.000405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220860
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1364/ol.28.001903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065221296
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1364/ol.28.001978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065221321
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.157927.f schema:alternateName Polytechnic University of Valencia
138 schema:name Valencia Nanophotonics Technology Center, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...