Optimal design and dispatch of a hybrid microgrid system capturing battery fade View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Gavin Goodall, Michael Scioletti, Alex Zolan, Bharatkumar Suthar, Alexandra Newman, Paul Kohl

ABSTRACT

Microgrids provide power to remote communities and at operational sites that are not connected to a grid. We consider such a microgrid that consists of batteries, photovoltaics, and diesel generators, and optimize the components it comprises and a corresponding dispatch strategy at hourly fidelity so as to minimize procurement, operations and maintenance, and fuel costs. The system is governed by constraints such as meeting demand and adhering to component interoperability and capability. Our contribution lies in the introduction to this optimization model of a set of constraints that incorporates capacity fade of a battery and temperature effects. We show, using data from a forward operating base and solving the corresponding instances for a time horizon of 8760 h, that higher temperatures decrease resistance, leading to better round-trip energy efficiency, but at the same time increase capacity fade of the battery, resulting in a higher overall operating cost. In some cases, the procurement strategy is robust to the fade of the battery, but fade can influence battery state of charge and power output as the available battery capacity degrades over time and with use. More... »

PAGES

1-35

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11081-018-9404-7

DOI

http://dx.doi.org/10.1007/s11081-018-9404-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1108019817


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Mechanical Engineering, Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodall", 
        "givenName": "Gavin", 
        "id": "sg:person.016546151071.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016546151071.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Mechanical Engineering, Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scioletti", 
        "givenName": "Michael", 
        "id": "sg:person.015313307071.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313307071.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Department of Mechanical Engineering, University of Texas at Austin, 78712, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zolan", 
        "givenName": "Alex", 
        "id": "sg:person.016067723760.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016067723760.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suthar", 
        "givenName": "Bharatkumar", 
        "id": "sg:person.011360266505.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360266505.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Mechanical Engineering, Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Newman", 
        "givenName": "Alexandra", 
        "id": "sg:person.016452131371.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452131371.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 30332, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohl", 
        "givenName": "Paul", 
        "id": "sg:person.011436040671.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011436040671.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.renene.2012.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005316508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2015.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006985119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2014.04.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007723153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2014.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007832319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2016.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010364537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01099647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012829236", 
          "https://doi.org/10.1007/bf01099647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01099647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012829236", 
          "https://doi.org/10.1007/bf01099647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijepes.2012.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022153457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2015.03.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023922432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2006.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024320543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2005.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026449055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2010.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029945090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2007.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032022903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-092x(93)90060-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036459746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2004.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038971970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11081-013-9226-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039072003", 
          "https://doi.org/10.1007/s11081-013-9226-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solener.2013.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040019020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2011.11.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041004927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2010.11.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043056539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2004.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043196331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2006.02.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044330942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/er.1956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045522729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2015.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046062397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.esd.2009.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046377527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.044302jes", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047062802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050107141", 
          "https://doi.org/10.1007/bf01580665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2009.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053016755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11081-017-9355-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085210759", 
          "https://doi.org/10.1007/s11081-017-9355-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11081-017-9355-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085210759", 
          "https://doi.org/10.1007/s11081-017-9355-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2017.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085448272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2017.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085448272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2017.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085448272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2017.08.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092635892"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Microgrids provide power to remote communities and at operational sites that are not connected to a grid. We consider such a microgrid that consists of batteries, photovoltaics, and diesel generators, and optimize the components it comprises and a corresponding dispatch strategy at hourly fidelity so as to minimize procurement, operations and maintenance, and fuel costs. The system is governed by constraints such as meeting demand and adhering to component interoperability and capability. Our contribution lies in the introduction to this optimization model of a set of constraints that incorporates capacity fade of a battery and temperature effects. We show, using data from a forward operating base and solving the corresponding instances for a time horizon of 8760 h, that higher temperatures decrease resistance, leading to better round-trip energy efficiency, but at the same time increase capacity fade of the battery, resulting in a higher overall operating cost. In some cases, the procurement strategy is robust to the fade of the battery, but fade can influence battery state of charge and power output as the available battery capacity degrades over time and with use.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11081-018-9404-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136707", 
        "issn": [
          "1389-4420", 
          "1573-2924"
        ], 
        "name": "Optimization and Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "Optimal design and dispatch of a hybrid microgrid system capturing battery fade", 
    "pagination": "1-35", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e7b48575227051f507aa872c2ca4a60961cca6e981b8309fa71435f2f2a36939"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11081-018-9404-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1108019817"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11081-018-9404-7", 
      "https://app.dimensions.ai/details/publication/pub.1108019817"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000576.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11081-018-9404-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11081-018-9404-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11081-018-9404-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11081-018-9404-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11081-018-9404-7'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      54 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11081-018-9404-7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N4c8e7f8486e046cbb4cb4646e5d4c307
4 schema:citation sg:pub.10.1007/bf01099647
5 sg:pub.10.1007/bf01580665
6 sg:pub.10.1007/s11081-013-9226-6
7 sg:pub.10.1007/s11081-017-9355-4
8 https://doi.org/10.1002/er.1956
9 https://doi.org/10.1016/0038-092x(93)90060-2
10 https://doi.org/10.1016/j.apenergy.2014.04.103
11 https://doi.org/10.1016/j.apenergy.2014.11.017
12 https://doi.org/10.1016/j.apenergy.2015.03.110
13 https://doi.org/10.1016/j.apenergy.2015.04.029
14 https://doi.org/10.1016/j.apenergy.2016.05.023
15 https://doi.org/10.1016/j.apenergy.2017.04.035
16 https://doi.org/10.1016/j.apenergy.2017.08.139
17 https://doi.org/10.1016/j.energy.2004.02.004
18 https://doi.org/10.1016/j.energy.2010.08.025
19 https://doi.org/10.1016/j.energy.2015.08.010
20 https://doi.org/10.1016/j.enpol.2011.11.054
21 https://doi.org/10.1016/j.esd.2009.07.002
22 https://doi.org/10.1016/j.ijepes.2012.07.015
23 https://doi.org/10.1016/j.jpowsour.2006.02.105
24 https://doi.org/10.1016/j.jpowsour.2010.11.134
25 https://doi.org/10.1016/j.renene.2006.04.008
26 https://doi.org/10.1016/j.renene.2009.02.031
27 https://doi.org/10.1016/j.renene.2012.01.011
28 https://doi.org/10.1016/j.rser.2007.11.017
29 https://doi.org/10.1016/j.solener.2004.10.004
30 https://doi.org/10.1016/j.solener.2005.11.002
31 https://doi.org/10.1016/j.solener.2013.08.016
32 https://doi.org/10.1149/2.044302jes
33 schema:datePublished 2019-03
34 schema:datePublishedReg 2019-03-01
35 schema:description Microgrids provide power to remote communities and at operational sites that are not connected to a grid. We consider such a microgrid that consists of batteries, photovoltaics, and diesel generators, and optimize the components it comprises and a corresponding dispatch strategy at hourly fidelity so as to minimize procurement, operations and maintenance, and fuel costs. The system is governed by constraints such as meeting demand and adhering to component interoperability and capability. Our contribution lies in the introduction to this optimization model of a set of constraints that incorporates capacity fade of a battery and temperature effects. We show, using data from a forward operating base and solving the corresponding instances for a time horizon of 8760 h, that higher temperatures decrease resistance, leading to better round-trip energy efficiency, but at the same time increase capacity fade of the battery, resulting in a higher overall operating cost. In some cases, the procurement strategy is robust to the fade of the battery, but fade can influence battery state of charge and power output as the available battery capacity degrades over time and with use.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf sg:journal.1136707
40 schema:name Optimal design and dispatch of a hybrid microgrid system capturing battery fade
41 schema:pagination 1-35
42 schema:productId N0a460dfa032648e683228a57ee769cb2
43 N470eb63e058f4a12a7e8bea6590a9696
44 Ne1f2745550c34f5abbaefc4ccdf89582
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108019817
46 https://doi.org/10.1007/s11081-018-9404-7
47 schema:sdDatePublished 2019-04-10T20:07
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nd269cf43357049cc827510f403e1295d
50 schema:url https://link.springer.com/10.1007%2Fs11081-018-9404-7
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0a460dfa032648e683228a57ee769cb2 schema:name doi
55 schema:value 10.1007/s11081-018-9404-7
56 rdf:type schema:PropertyValue
57 N470eb63e058f4a12a7e8bea6590a9696 schema:name dimensions_id
58 schema:value pub.1108019817
59 rdf:type schema:PropertyValue
60 N4c8e7f8486e046cbb4cb4646e5d4c307 rdf:first sg:person.016546151071.25
61 rdf:rest N525056e074e34918ba6043b8d2a12d0b
62 N525056e074e34918ba6043b8d2a12d0b rdf:first sg:person.015313307071.06
63 rdf:rest N9a3d33dcae53467c9c7e7e4dff1b4030
64 N829037751d4247a4aa4226688b0666ca rdf:first sg:person.016452131371.82
65 rdf:rest N833d3e51a4fe4d95a106ec89c7bfe7ab
66 N833d3e51a4fe4d95a106ec89c7bfe7ab rdf:first sg:person.011436040671.29
67 rdf:rest rdf:nil
68 N9a3d33dcae53467c9c7e7e4dff1b4030 rdf:first sg:person.016067723760.82
69 rdf:rest Nb4f84105776d40acb9d7582f737f0c40
70 Nb4f84105776d40acb9d7582f737f0c40 rdf:first sg:person.011360266505.77
71 rdf:rest N829037751d4247a4aa4226688b0666ca
72 Nd269cf43357049cc827510f403e1295d schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Ne1f2745550c34f5abbaefc4ccdf89582 schema:name readcube_id
75 schema:value e7b48575227051f507aa872c2ca4a60961cca6e981b8309fa71435f2f2a36939
76 rdf:type schema:PropertyValue
77 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
78 schema:name Chemical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Chemistry (incl. Structural)
82 rdf:type schema:DefinedTerm
83 sg:journal.1136707 schema:issn 1389-4420
84 1573-2924
85 schema:name Optimization and Engineering
86 rdf:type schema:Periodical
87 sg:person.011360266505.77 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
88 schema:familyName Suthar
89 schema:givenName Bharatkumar
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360266505.77
91 rdf:type schema:Person
92 sg:person.011436040671.29 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
93 schema:familyName Kohl
94 schema:givenName Paul
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011436040671.29
96 rdf:type schema:Person
97 sg:person.015313307071.06 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
98 schema:familyName Scioletti
99 schema:givenName Michael
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313307071.06
101 rdf:type schema:Person
102 sg:person.016067723760.82 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
103 schema:familyName Zolan
104 schema:givenName Alex
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016067723760.82
106 rdf:type schema:Person
107 sg:person.016452131371.82 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
108 schema:familyName Newman
109 schema:givenName Alexandra
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452131371.82
111 rdf:type schema:Person
112 sg:person.016546151071.25 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
113 schema:familyName Goodall
114 schema:givenName Gavin
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016546151071.25
116 rdf:type schema:Person
117 sg:pub.10.1007/bf01099647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012829236
118 https://doi.org/10.1007/bf01099647
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf01580665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050107141
121 https://doi.org/10.1007/bf01580665
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11081-013-9226-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039072003
124 https://doi.org/10.1007/s11081-013-9226-6
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11081-017-9355-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085210759
127 https://doi.org/10.1007/s11081-017-9355-4
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/er.1956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045522729
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0038-092x(93)90060-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036459746
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.apenergy.2014.04.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007723153
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.apenergy.2014.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007832319
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.apenergy.2015.03.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023922432
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.apenergy.2015.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046062397
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.apenergy.2016.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010364537
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.apenergy.2017.04.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085448272
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.apenergy.2017.08.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092635892
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.energy.2004.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043196331
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.energy.2010.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029945090
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.energy.2015.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006985119
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.enpol.2011.11.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041004927
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.esd.2009.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046377527
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ijepes.2012.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022153457
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jpowsour.2006.02.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044330942
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jpowsour.2010.11.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043056539
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.renene.2006.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024320543
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.renene.2009.02.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053016755
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.renene.2012.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005316508
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.rser.2007.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032022903
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.solener.2004.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038971970
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.solener.2005.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026449055
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.solener.2013.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040019020
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1149/2.044302jes schema:sameAs https://app.dimensions.ai/details/publication/pub.1047062802
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
180 schema:name School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 30332, Atlanta, GA, USA
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
183 schema:name Department of Mechanical Engineering, Colorado School of Mines, 80401, Golden, CO, USA
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
186 schema:name Department of Mechanical Engineering, University of Texas at Austin, 78712, Austin, TX, USA
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...