A decomposition approach for optimal gas network extension with a finite set of demand scenarios View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

Jonas Schweiger, Frauke Liers

ABSTRACT

Today’s gas markets demand more flexibility from the network operators which in turn have to invest in their network infrastructure. As these investments are very cost-intensive and long-lasting, network extensions should not only focus on a single bottleneck scenario, but should increase the flexibility to fulfill different demand scenarios. In this work, we formulate a model for the network extension problem for multiple demand scenarios and propose a scenario decomposition in order to solve the resulting challenging optimization tasks. In fact, each subproblem consists of a mixed-integer nonlinear optimization problem. Valid bounds on the objective value are derived even without solving the subproblems to optimality. Furthermore, we develop heuristics that prove capable of improving the initial solutions substantially. The results of computational experiments on realistic network topologies are presented. It turns out that our method is able to solve these challenging instances to optimality within a reasonable amount of time. More... »

PAGES

297-326

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11081-017-9371-4

DOI

http://dx.doi.org/10.1007/s11081-017-9371-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101080046


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zuse Institute Berlin", 
          "id": "https://www.grid.ac/institutes/grid.425649.8", 
          "name": [
            "Department Mathematical Optimization, Zuse Institute Berlin, Takustrasse 7, 14195, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schweiger", 
        "givenName": "Jonas", 
        "id": "sg:person.012747171323.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012747171323.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Department of Mathematics, University Erlangen-N\u00fcrnberg, Cauerstrasse 11, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liers", 
        "givenName": "Frauke", 
        "id": "sg:person.010100002007.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010100002007.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.apenergy.2015.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-0808-0_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002300650", 
          "https://doi.org/10.1007/978-1-4939-0808-0_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-68783-2_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008484630", 
          "https://doi.org/10.1007/978-3-540-68783-2_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-009-0600-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009148923", 
          "https://doi.org/10.1007/s10479-009-0600-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-009-0600-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009148923", 
          "https://doi.org/10.1007/s10479-009-0600-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-009-0600-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009148923", 
          "https://doi.org/10.1007/s10479-009-0600-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-28697-6_75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010778098", 
          "https://doi.org/10.1007/978-3-319-28697-6_75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-1927-3_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011624504", 
          "https://doi.org/10.1007/978-1-4614-1927-3_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1014296730", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-0237-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014296730", 
          "https://doi.org/10.1007/978-1-4614-0237-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-0237-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014296730", 
          "https://doi.org/10.1007/978-1-4614-0237-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-1354(91)85027-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016293855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6377(98)00050-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017323691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-015-0891-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018446264", 
          "https://doi.org/10.1007/s10107-015-0891-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556788.2014.888426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022687842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6377(99)00016-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023678521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00186-016-0564-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024706814", 
          "https://doi.org/10.1007/s00186-016-0564-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00186-016-0564-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024706814", 
          "https://doi.org/10.1007/s00186-016-0564-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021529709006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024847050", 
          "https://doi.org/10.1023/a:1021529709006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11081-016-9322-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028681771", 
          "https://doi.org/10.1007/s11081-016-9322-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11081-016-9322-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028681771", 
          "https://doi.org/10.1007/s11081-016-9322-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-011-9888-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030812870", 
          "https://doi.org/10.1007/s10957-011-9888-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12532-008-0001-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031795076", 
          "https://doi.org/10.1007/s12532-008-0001-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00934810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032616182", 
          "https://doi.org/10.1007/bf00934810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00934810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032616182", 
          "https://doi.org/10.1007/bf00934810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eneco.2011.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036635613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.omega.2014.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041032485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-003-0396-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045733404", 
          "https://doi.org/10.1007/s10107-003-0396-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-05465-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046065326", 
          "https://doi.org/10.1007/978-3-642-05465-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-05465-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046065326", 
          "https://doi.org/10.1007/978-3-642-05465-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-003-0454-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047809141", 
          "https://doi.org/10.1007/s10107-003-0454-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.24.7.747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064719074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1080.0678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.21.5.1154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064728403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5547/01956574.37.si3.mfod", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072972773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814407519_0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088776360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556788.2017.1335312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090860263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/eem.2011.5953035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094670825"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "Today\u2019s gas markets demand more flexibility from the network operators which in turn have to invest in their network infrastructure. As these investments are very cost-intensive and long-lasting, network extensions should not only focus on a single bottleneck scenario, but should increase the flexibility to fulfill different demand scenarios. In this work, we formulate a model for the network extension problem for multiple demand scenarios and propose a scenario decomposition in order to solve the resulting challenging optimization tasks. In fact, each subproblem consists of a mixed-integer nonlinear optimization problem. Valid bounds on the objective value are derived even without solving the subproblems to optimality. Furthermore, we develop heuristics that prove capable of improving the initial solutions substantially. The results of computational experiments on realistic network topologies are presented. It turns out that our method is able to solve these challenging instances to optimality within a reasonable amount of time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11081-017-9371-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136707", 
        "issn": [
          "1389-4420", 
          "1573-2924"
        ], 
        "name": "Optimization and Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "A decomposition approach for optimal gas network extension with a finite set of demand scenarios", 
    "pagination": "297-326", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "282916dbb75014a568a4d8185e8d9d321c895aa6ee09f2ff9bfd9086cd7e3f7d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11081-017-9371-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101080046"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11081-017-9371-4", 
      "https://app.dimensions.ai/details/publication/pub.1101080046"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11081-017-9371-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11081-017-9371-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11081-017-9371-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11081-017-9371-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11081-017-9371-4'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11081-017-9371-4 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nf25aca079d48435e9da7d611b53bbcdf
4 schema:citation sg:pub.10.1007/978-1-4614-0237-4
5 sg:pub.10.1007/978-1-4614-1927-3_15
6 sg:pub.10.1007/978-1-4939-0808-0_16
7 sg:pub.10.1007/978-3-319-28697-6_75
8 sg:pub.10.1007/978-3-540-68783-2_16
9 sg:pub.10.1007/978-3-642-05465-5_1
10 sg:pub.10.1007/bf00934810
11 sg:pub.10.1007/s00186-016-0564-y
12 sg:pub.10.1007/s10107-003-0396-4
13 sg:pub.10.1007/s10107-003-0454-y
14 sg:pub.10.1007/s10107-015-0891-4
15 sg:pub.10.1007/s10479-009-0600-x
16 sg:pub.10.1007/s10957-011-9888-1
17 sg:pub.10.1007/s11081-016-9322-5
18 sg:pub.10.1007/s12532-008-0001-1
19 sg:pub.10.1023/a:1021529709006
20 https://app.dimensions.ai/details/publication/pub.1014296730
21 https://doi.org/10.1016/0098-1354(91)85027-r
22 https://doi.org/10.1016/j.apenergy.2015.03.017
23 https://doi.org/10.1016/j.eneco.2011.05.014
24 https://doi.org/10.1016/j.omega.2014.12.006
25 https://doi.org/10.1016/s0167-6377(98)00050-9
26 https://doi.org/10.1016/s0167-6377(99)00016-4
27 https://doi.org/10.1080/10556788.2014.888426
28 https://doi.org/10.1080/10556788.2017.1335312
29 https://doi.org/10.1109/eem.2011.5953035
30 https://doi.org/10.1142/9789814407519_0010
31 https://doi.org/10.1287/mnsc.24.7.747
32 https://doi.org/10.1287/opre.1080.0678
33 https://doi.org/10.1287/opre.21.5.1154
34 https://doi.org/10.5547/01956574.37.si3.mfod
35 schema:datePublished 2018-06
36 schema:datePublishedReg 2018-06-01
37 schema:description Today’s gas markets demand more flexibility from the network operators which in turn have to invest in their network infrastructure. As these investments are very cost-intensive and long-lasting, network extensions should not only focus on a single bottleneck scenario, but should increase the flexibility to fulfill different demand scenarios. In this work, we formulate a model for the network extension problem for multiple demand scenarios and propose a scenario decomposition in order to solve the resulting challenging optimization tasks. In fact, each subproblem consists of a mixed-integer nonlinear optimization problem. Valid bounds on the objective value are derived even without solving the subproblems to optimality. Furthermore, we develop heuristics that prove capable of improving the initial solutions substantially. The results of computational experiments on realistic network topologies are presented. It turns out that our method is able to solve these challenging instances to optimality within a reasonable amount of time.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N66d95767c8fd4b049515f81eab46724e
42 N8279de67f0d147b48d0f2cddd3cf8522
43 sg:journal.1136707
44 schema:name A decomposition approach for optimal gas network extension with a finite set of demand scenarios
45 schema:pagination 297-326
46 schema:productId N6c4ed668766c4ff8b5decfcb877b0aef
47 Ncd75af6e97214b678b23c104953c3aae
48 Ndd2c90169720431eb3536e4c9d1ba7d2
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101080046
50 https://doi.org/10.1007/s11081-017-9371-4
51 schema:sdDatePublished 2019-04-10T15:47
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N481f469f3ef6452596e7dfc8200259a5
54 schema:url http://link.springer.com/10.1007/s11081-017-9371-4
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N481f469f3ef6452596e7dfc8200259a5 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N66d95767c8fd4b049515f81eab46724e schema:volumeNumber 19
61 rdf:type schema:PublicationVolume
62 N6c4ed668766c4ff8b5decfcb877b0aef schema:name dimensions_id
63 schema:value pub.1101080046
64 rdf:type schema:PropertyValue
65 N8279de67f0d147b48d0f2cddd3cf8522 schema:issueNumber 2
66 rdf:type schema:PublicationIssue
67 Naf90b6c9d7604d558b654028b82cb7f2 rdf:first sg:person.010100002007.40
68 rdf:rest rdf:nil
69 Ncd75af6e97214b678b23c104953c3aae schema:name readcube_id
70 schema:value 282916dbb75014a568a4d8185e8d9d321c895aa6ee09f2ff9bfd9086cd7e3f7d
71 rdf:type schema:PropertyValue
72 Ndd2c90169720431eb3536e4c9d1ba7d2 schema:name doi
73 schema:value 10.1007/s11081-017-9371-4
74 rdf:type schema:PropertyValue
75 Nf25aca079d48435e9da7d611b53bbcdf rdf:first sg:person.012747171323.84
76 rdf:rest Naf90b6c9d7604d558b654028b82cb7f2
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
81 schema:name Numerical and Computational Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1136707 schema:issn 1389-4420
84 1573-2924
85 schema:name Optimization and Engineering
86 rdf:type schema:Periodical
87 sg:person.010100002007.40 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
88 schema:familyName Liers
89 schema:givenName Frauke
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010100002007.40
91 rdf:type schema:Person
92 sg:person.012747171323.84 schema:affiliation https://www.grid.ac/institutes/grid.425649.8
93 schema:familyName Schweiger
94 schema:givenName Jonas
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012747171323.84
96 rdf:type schema:Person
97 sg:pub.10.1007/978-1-4614-0237-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014296730
98 https://doi.org/10.1007/978-1-4614-0237-4
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-1-4614-1927-3_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011624504
101 https://doi.org/10.1007/978-1-4614-1927-3_15
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-1-4939-0808-0_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002300650
104 https://doi.org/10.1007/978-1-4939-0808-0_16
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-319-28697-6_75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010778098
107 https://doi.org/10.1007/978-3-319-28697-6_75
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-540-68783-2_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008484630
110 https://doi.org/10.1007/978-3-540-68783-2_16
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-642-05465-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046065326
113 https://doi.org/10.1007/978-3-642-05465-5_1
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf00934810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032616182
116 https://doi.org/10.1007/bf00934810
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00186-016-0564-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024706814
119 https://doi.org/10.1007/s00186-016-0564-y
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10107-003-0396-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045733404
122 https://doi.org/10.1007/s10107-003-0396-4
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10107-003-0454-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047809141
125 https://doi.org/10.1007/s10107-003-0454-y
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10107-015-0891-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018446264
128 https://doi.org/10.1007/s10107-015-0891-4
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10479-009-0600-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009148923
131 https://doi.org/10.1007/s10479-009-0600-x
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s10957-011-9888-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030812870
134 https://doi.org/10.1007/s10957-011-9888-1
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s11081-016-9322-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028681771
137 https://doi.org/10.1007/s11081-016-9322-5
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s12532-008-0001-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031795076
140 https://doi.org/10.1007/s12532-008-0001-1
141 rdf:type schema:CreativeWork
142 sg:pub.10.1023/a:1021529709006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024847050
143 https://doi.org/10.1023/a:1021529709006
144 rdf:type schema:CreativeWork
145 https://app.dimensions.ai/details/publication/pub.1014296730 schema:CreativeWork
146 https://doi.org/10.1016/0098-1354(91)85027-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1016293855
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.apenergy.2015.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754534
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.eneco.2011.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036635613
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.omega.2014.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041032485
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0167-6377(98)00050-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017323691
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0167-6377(99)00016-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023678521
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1080/10556788.2014.888426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022687842
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1080/10556788.2017.1335312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090860263
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/eem.2011.5953035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094670825
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1142/9789814407519_0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088776360
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1287/mnsc.24.7.747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064719074
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1287/opre.1080.0678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726140
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1287/opre.21.5.1154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064728403
171 rdf:type schema:CreativeWork
172 https://doi.org/10.5547/01956574.37.si3.mfod schema:sameAs https://app.dimensions.ai/details/publication/pub.1072972773
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.425649.8 schema:alternateName Zuse Institute Berlin
175 schema:name Department Mathematical Optimization, Zuse Institute Berlin, Takustrasse 7, 14195, Berlin, Germany
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.5330.5 schema:alternateName University of Erlangen-Nuremberg
178 schema:name Department of Mathematics, University Erlangen-Nürnberg, Cauerstrasse 11, 91058, Erlangen, Germany
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...