Ontology type: schema:ScholarlyArticle
2021-10-13
AUTHORSG. N. Grapiglia, M. L. N. Gonçalves, G. N. Silva
ABSTRACTIn this paper, we present a version of the cubic regularization of Newton’s method for unconstrained nonconvex optimization, in which the Hessian matrices are approximated by forward finite difference Hessians. The regularization parameter of the cubic models and the accuracy of the Hessian approximations are jointly adjusted using a nonmonotone line search criterion. Assuming that the Hessian of the objective function is globally Lipschitz continuous, we show that the proposed method needs at most On𝜖−3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\left (n\epsilon ^{-3/2}\right )$\end{document} function and gradient evaluations to generate an 𝜖-approximate stationary point, where n is the dimension of the domain of the objective function. Preliminary numerical results corroborate our theoretical findings. More... »
PAGES1-24
http://scigraph.springernature.com/pub.10.1007/s11075-021-01200-y
DOIhttp://dx.doi.org/10.1007/s11075-021-01200-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141849951
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Departamento de Matem\u00e1tica, Universidade Federal do Paran\u00e1, Centro Polit\u00e9cnico, Cx. postal 19.081, 81531-980, Curitiba, PR, Brazil",
"id": "http://www.grid.ac/institutes/grid.20736.30",
"name": [
"Departamento de Matem\u00e1tica, Universidade Federal do Paran\u00e1, Centro Polit\u00e9cnico, Cx. postal 19.081, 81531-980, Curitiba, PR, Brazil"
],
"type": "Organization"
},
"familyName": "Grapiglia",
"givenName": "G. N.",
"id": "sg:person.010427573717.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010427573717.89"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "IME, Universidade Federal de Goi\u00e1s, Campus II- Cx. postal 131, 74001-970, Goi\u00e2nia, GO, Brazil",
"id": "http://www.grid.ac/institutes/grid.411195.9",
"name": [
"IME, Universidade Federal de Goi\u00e1s, Campus II- Cx. postal 131, 74001-970, Goi\u00e2nia, GO, Brazil"
],
"type": "Organization"
},
"familyName": "Gon\u00e7alves",
"givenName": "M. L. N.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Colegiado de Matem\u00e1tica, Universidade Federal do Oeste da Bahia, 47808-021, Barreiras, BA, Brazil",
"id": "http://www.grid.ac/institutes/grid.472638.c",
"name": [
"Colegiado de Matem\u00e1tica, Universidade Federal do Oeste da Bahia, 47808-021, Barreiras, BA, Brazil"
],
"type": "Organization"
},
"familyName": "Silva",
"givenName": "G. N.",
"id": "sg:person.016672542147.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016672542147.21"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10107-016-1026-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008021320",
"https://doi.org/10.1007/s10107-016-1026-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10107-009-0337-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007745891",
"https://doi.org/10.1007/s10107-009-0337-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00180-017-0765-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091817170",
"https://doi.org/10.1007/s00180-017-0765-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01456804",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023104003",
"https://doi.org/10.1007/bf01456804"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10107-006-0706-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001889025",
"https://doi.org/10.1007/s10107-006-0706-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10589-017-9928-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090902476",
"https://doi.org/10.1007/s10589-017-9928-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10957-018-1341-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105463477",
"https://doi.org/10.1007/s10957-018-1341-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10107-016-1065-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007770754",
"https://doi.org/10.1007/s10107-016-1065-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10107-009-0286-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011221568",
"https://doi.org/10.1007/s10107-009-0286-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10898-016-0475-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008845437",
"https://doi.org/10.1007/s10898-016-0475-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10107-019-01406-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1116870816",
"https://doi.org/10.1007/s10107-019-01406-y"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-13",
"datePublishedReg": "2021-10-13",
"description": "In this paper, we present a version of the cubic regularization of Newton\u2019s method for unconstrained nonconvex optimization, in which the Hessian matrices are approximated by forward finite difference Hessians. The regularization parameter of the cubic models and the accuracy of the Hessian approximations are jointly adjusted using a nonmonotone line search criterion. Assuming that the Hessian of the objective function is globally Lipschitz continuous, we show that the proposed method needs at most On\ud835\udf16\u22123/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal {O}\\left (n\\epsilon ^{-3/2}\\right )$\\end{document} function and gradient evaluations to generate an \ud835\udf16-approximate stationary point, where n is the dimension of the domain of the objective function. Preliminary numerical results corroborate our theoretical findings.",
"genre": "article",
"id": "sg:pub.10.1007/s11075-021-01200-y",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1050467",
"issn": [
"1017-1398",
"1572-9265"
],
"name": "Numerical Algorithms",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"cubic regularization",
"Hessian approximation",
"Newton method",
"unconstrained nonconvex optimization",
"line search criterion",
"objective function",
"approximate stationary point",
"preliminary numerical results",
"nonconvex optimization",
"gradient evaluations",
"regularization parameter",
"Hessian matrix",
"stationary points",
"theoretical findings",
"numerical results",
"Hessian",
"approximation",
"cubic model",
"regularization",
"Lipschitz",
"optimization",
"function",
"matrix",
"parameters",
"accuracy",
"dimensions",
"model",
"version",
"point",
"domain",
"criteria",
"results",
"search criteria",
"evaluation",
"findings",
"method",
"paper"
],
"name": "A cubic regularization of Newton\u2019s method with finite difference Hessian approximations",
"pagination": "1-24",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141849951"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11075-021-01200-y"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11075-021-01200-y",
"https://app.dimensions.ai/details/publication/pub.1141849951"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:27",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_887.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11075-021-01200-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11075-021-01200-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11075-021-01200-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11075-021-01200-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11075-021-01200-y'
This table displays all metadata directly associated to this object as RDF triples.
152 TRIPLES
22 PREDICATES
71 URIs
52 LITERALS
4 BLANK NODES