A high-order numerical method for solving the 2D fourth-order reaction-diffusion equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Haixiang Zhang, Xuehua Yang, Da Xu

ABSTRACT

In the present work, orthogonal spline collocation (OSC) method with convergence order O(τ3−α + hr+ 1) is proposed for the two-dimensional (2D) fourth-order fractional reaction-diffusion equation, where τ, h, r, and α are the time-step size, space size, polynomial degree of space, and the order of the time-fractional derivative (0 < α < 1), respectively. The method is based on applying a high-order finite difference method (FDM) to approximate the time Caputo fractional derivative and employing OSC method to approximate the spatial fourth-order derivative. Using the argument developed recently by Lv and Xu (SIAM J. Sci. Comput. 38, A2699–A2724, 2016) and mathematical induction method, the optimal error estimates of proposed fully discrete OSC method are proved in detail. Then, the theoretical analysis is validated by a number of numerical experiments. To the best of our knowledge, this is the first proof on the error estimates of high-order numerical method with convergence order O(τ3−α + hr+ 1) for the 2D fourth-order fractional equation. More... »

PAGES

849-877

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11075-018-0509-z

DOI

http://dx.doi.org/10.1007/s11075-018-0509-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101767820


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics and Computational Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.418809.c", 
          "name": [
            "School of Science, Hunan University of Technology, 412007, Zhuzhou, China", 
            "National Key Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Haixiang", 
        "id": "sg:person.013524040062.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013524040062.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics and Computational Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.418809.c", 
          "name": [
            "School of Science, Hunan University of Technology, 412007, Zhuzhou, China", 
            "National Key Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xuehua", 
        "id": "sg:person.010206531551.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010206531551.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411427.5", 
          "name": [
            "Department of Mathematics, Hunan Normal University, 410081, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Da", 
        "id": "sg:person.016705741651.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016705741651.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cam.2011.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000645117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-012-9689-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001567256", 
          "https://doi.org/10.1007/s11075-012-9689-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00036811.2016.1167879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001701919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2011.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006328169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2014.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008929656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009216981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2011.10.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011867773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2012.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011869998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0898-1221(98)00013-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012943888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-015-0059-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014596542", 
          "https://doi.org/10.1007/s10915-015-0059-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apnum.2005.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015001839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mcm.2011.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016723351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-016-0319-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023554161", 
          "https://doi.org/10.1007/s10915-016-0319-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-016-0319-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023554161", 
          "https://doi.org/10.1007/s10915-016-0319-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2016.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024137211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2015.11.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025420920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10543-013-0443-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027414122", 
          "https://doi.org/10.1007/s10543-013-0443-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10543-013-0443-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027414122", 
          "https://doi.org/10.1007/s10543-013-0443-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.875-877.781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028707783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2015.11.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031104357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207160.2014.948430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031314495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2013.07.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033759729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2014.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036921291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-015-0152-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037274886", 
          "https://doi.org/10.1007/s10915-015-0152-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2015.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038736447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/fca-2015-0045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043364384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apnum.2016.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044499753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2015.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044881110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2015.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044881110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2015.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044881110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2015.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044881110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2007.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050068518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053014128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.53.r1336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.53.r1336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0717050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0723020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062853158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0729047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062853727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/15m102664x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062873826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036142996302396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036142996305406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450240506x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4208/aamm.2014.4.s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072359007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-017-0271-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074201134", 
          "https://doi.org/10.1007/s11075-017-0271-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-017-0271-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074201134", 
          "https://doi.org/10.1007/s11075-017-0271-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "In the present work, orthogonal spline collocation (OSC) method with convergence order O(\u03c43\u2212\u03b1 + hr+ 1) is proposed for the two-dimensional (2D) fourth-order fractional reaction-diffusion equation, where \u03c4, h, r, and \u03b1 are the time-step size, space size, polynomial degree of space, and the order of the time-fractional derivative (0 < \u03b1 < 1), respectively. The method is based on applying a high-order finite difference method (FDM) to approximate the time Caputo fractional derivative and employing OSC method to approximate the spatial fourth-order derivative. Using the argument developed recently by Lv and Xu (SIAM J. Sci. Comput. 38, A2699\u2013A2724, 2016) and mathematical induction method, the optimal error estimates of proposed fully discrete OSC method are proved in detail. Then, the theoretical analysis is validated by a number of numerical experiments. To the best of our knowledge, this is the first proof on the error estimates of high-order numerical method with convergence order O(\u03c43\u2212\u03b1 + hr+ 1) for the 2D fourth-order fractional equation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11075-018-0509-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050467", 
        "issn": [
          "1017-1398", 
          "1572-9265"
        ], 
        "name": "Numerical Algorithms", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "80"
      }
    ], 
    "name": "A high-order numerical method for solving the 2D fourth-order reaction-diffusion equation", 
    "pagination": "849-877", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1daa6c6c0379081e55eef4030da0a038f9b6cef77deb65c46e352a39cf48fdca"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11075-018-0509-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101767820"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11075-018-0509-z", 
      "https://app.dimensions.ai/details/publication/pub.1101767820"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112054_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11075-018-0509-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11075-018-0509-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11075-018-0509-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11075-018-0509-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11075-018-0509-z'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11075-018-0509-z schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nce48b23e2c164cac9390443d29ef7c61
4 schema:citation sg:pub.10.1007/s10543-013-0443-3
5 sg:pub.10.1007/s10915-015-0059-7
6 sg:pub.10.1007/s10915-015-0152-y
7 sg:pub.10.1007/s10915-016-0319-1
8 sg:pub.10.1007/s11075-012-9689-0
9 sg:pub.10.1007/s11075-017-0271-7
10 https://doi.org/10.1016/j.amc.2011.10.069
11 https://doi.org/10.1016/j.amc.2014.06.023
12 https://doi.org/10.1016/j.apm.2013.07.040
13 https://doi.org/10.1016/j.apnum.2005.03.003
14 https://doi.org/10.1016/j.apnum.2016.04.010
15 https://doi.org/10.1016/j.cam.2011.01.011
16 https://doi.org/10.1016/j.cam.2014.11.020
17 https://doi.org/10.1016/j.cam.2015.11.037
18 https://doi.org/10.1016/j.camwa.2015.05.015
19 https://doi.org/10.1016/j.camwa.2015.09.012
20 https://doi.org/10.1016/j.camwa.2016.11.020
21 https://doi.org/10.1016/j.cma.2015.11.033
22 https://doi.org/10.1016/j.cpc.2011.04.013
23 https://doi.org/10.1016/j.jcp.2007.02.001
24 https://doi.org/10.1016/j.jcp.2012.08.026
25 https://doi.org/10.1016/j.jcp.2013.11.017
26 https://doi.org/10.1016/j.jcp.2014.09.031
27 https://doi.org/10.1016/j.mcm.2011.01.011
28 https://doi.org/10.1016/s0898-1221(98)00013-3
29 https://doi.org/10.1080/00036811.2016.1167879
30 https://doi.org/10.1080/00207160.2014.948430
31 https://doi.org/10.1103/physreve.53.r1336
32 https://doi.org/10.1137/0717050
33 https://doi.org/10.1137/0723020
34 https://doi.org/10.1137/0729047
35 https://doi.org/10.1137/15m102664x
36 https://doi.org/10.1137/s0036142996302396
37 https://doi.org/10.1137/s0036142996305406
38 https://doi.org/10.1137/s003614450240506x
39 https://doi.org/10.1515/fca-2015-0045
40 https://doi.org/10.4028/www.scientific.net/amr.875-877.781
41 https://doi.org/10.4208/aamm.2014.4.s1
42 schema:datePublished 2019-03
43 schema:datePublishedReg 2019-03-01
44 schema:description In the present work, orthogonal spline collocation (OSC) method with convergence order O(τ3−α + hr+ 1) is proposed for the two-dimensional (2D) fourth-order fractional reaction-diffusion equation, where τ, h, r, and α are the time-step size, space size, polynomial degree of space, and the order of the time-fractional derivative (0 < α < 1), respectively. The method is based on applying a high-order finite difference method (FDM) to approximate the time Caputo fractional derivative and employing OSC method to approximate the spatial fourth-order derivative. Using the argument developed recently by Lv and Xu (SIAM J. Sci. Comput. 38, A2699–A2724, 2016) and mathematical induction method, the optimal error estimates of proposed fully discrete OSC method are proved in detail. Then, the theoretical analysis is validated by a number of numerical experiments. To the best of our knowledge, this is the first proof on the error estimates of high-order numerical method with convergence order O(τ3−α + hr+ 1) for the 2D fourth-order fractional equation.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf Nba396dbb1bb34fb28ffae1575a8db593
49 Ne56ed892d7d94accbe6cb70796ad7172
50 sg:journal.1050467
51 schema:name A high-order numerical method for solving the 2D fourth-order reaction-diffusion equation
52 schema:pagination 849-877
53 schema:productId N4a6d2a43e15943c990339ea7e0a14a57
54 N897078c0f63c4a5b9f9d347e81039bd5
55 Nda2e880ab5c04b4d95c1ea73ae18db48
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101767820
57 https://doi.org/10.1007/s11075-018-0509-z
58 schema:sdDatePublished 2019-04-11T13:05
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N6381371e95ef4179a6f9e8568902090e
61 schema:url https://link.springer.com/10.1007%2Fs11075-018-0509-z
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N4a6d2a43e15943c990339ea7e0a14a57 schema:name dimensions_id
66 schema:value pub.1101767820
67 rdf:type schema:PropertyValue
68 N5971c2d80dc64fd6ae2a05c247181016 rdf:first sg:person.010206531551.41
69 rdf:rest Nf706d8392ec348329435e4716d664271
70 N6381371e95ef4179a6f9e8568902090e schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N897078c0f63c4a5b9f9d347e81039bd5 schema:name doi
73 schema:value 10.1007/s11075-018-0509-z
74 rdf:type schema:PropertyValue
75 Nba396dbb1bb34fb28ffae1575a8db593 schema:volumeNumber 80
76 rdf:type schema:PublicationVolume
77 Nce48b23e2c164cac9390443d29ef7c61 rdf:first sg:person.013524040062.40
78 rdf:rest N5971c2d80dc64fd6ae2a05c247181016
79 Nda2e880ab5c04b4d95c1ea73ae18db48 schema:name readcube_id
80 schema:value 1daa6c6c0379081e55eef4030da0a038f9b6cef77deb65c46e352a39cf48fdca
81 rdf:type schema:PropertyValue
82 Ne56ed892d7d94accbe6cb70796ad7172 schema:issueNumber 3
83 rdf:type schema:PublicationIssue
84 Nf706d8392ec348329435e4716d664271 rdf:first sg:person.016705741651.89
85 rdf:rest rdf:nil
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
90 schema:name Statistics
91 rdf:type schema:DefinedTerm
92 sg:journal.1050467 schema:issn 1017-1398
93 1572-9265
94 schema:name Numerical Algorithms
95 rdf:type schema:Periodical
96 sg:person.010206531551.41 schema:affiliation https://www.grid.ac/institutes/grid.418809.c
97 schema:familyName Yang
98 schema:givenName Xuehua
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010206531551.41
100 rdf:type schema:Person
101 sg:person.013524040062.40 schema:affiliation https://www.grid.ac/institutes/grid.418809.c
102 schema:familyName Zhang
103 schema:givenName Haixiang
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013524040062.40
105 rdf:type schema:Person
106 sg:person.016705741651.89 schema:affiliation https://www.grid.ac/institutes/grid.411427.5
107 schema:familyName Xu
108 schema:givenName Da
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016705741651.89
110 rdf:type schema:Person
111 sg:pub.10.1007/s10543-013-0443-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027414122
112 https://doi.org/10.1007/s10543-013-0443-3
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10915-015-0059-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014596542
115 https://doi.org/10.1007/s10915-015-0059-7
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s10915-015-0152-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037274886
118 https://doi.org/10.1007/s10915-015-0152-y
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10915-016-0319-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023554161
121 https://doi.org/10.1007/s10915-016-0319-1
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11075-012-9689-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001567256
124 https://doi.org/10.1007/s11075-012-9689-0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11075-017-0271-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074201134
127 https://doi.org/10.1007/s11075-017-0271-7
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.amc.2011.10.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011867773
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.amc.2014.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053014128
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.apm.2013.07.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033759729
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.apnum.2005.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015001839
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.apnum.2016.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044499753
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.cam.2011.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000645117
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.cam.2014.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008929656
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.cam.2015.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025420920
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.camwa.2015.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038736447
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.camwa.2015.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044881110
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.camwa.2016.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024137211
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.cma.2015.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031104357
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.cpc.2011.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006328169
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jcp.2007.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050068518
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jcp.2012.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011869998
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jcp.2013.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009216981
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jcp.2014.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036921291
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.mcm.2011.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016723351
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0898-1221(98)00013-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012943888
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/00036811.2016.1167879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001701919
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1080/00207160.2014.948430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031314495
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreve.53.r1336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060719513
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1137/0717050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852691
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1137/0723020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062853158
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1137/0729047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062853727
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1137/15m102664x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062873826
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1137/s0036142996302396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877365
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1137/s0036142996305406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877378
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1137/s003614450240506x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877784
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1515/fca-2015-0045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043364384
188 rdf:type schema:CreativeWork
189 https://doi.org/10.4028/www.scientific.net/amr.875-877.781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028707783
190 rdf:type schema:CreativeWork
191 https://doi.org/10.4208/aamm.2014.4.s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072359007
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.411427.5 schema:alternateName Hunan Normal University
194 schema:name Department of Mathematics, Hunan Normal University, 410081, Changsha, China
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.418809.c schema:alternateName Institute of Applied Physics and Computational Mathematics
197 schema:name National Key Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
198 School of Science, Hunan University of Technology, 412007, Zhuzhou, China
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...