Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06-06

AUTHORS

S. Amat, Ioannis K. Argyros, S. Busquier, Á. Alberto Magreñán

ABSTRACT

We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study More... »

PAGES

371-391

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11075-016-0152-5

DOI

http://dx.doi.org/10.1007/s11075-016-0152-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007499341


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departamento de Matem\u00e1tica Aplicada y Estad\u00edstica, Universidad Polit\u00e9cnica de Cartagena, Cartagena, Spain", 
          "id": "http://www.grid.ac/institutes/grid.218430.c", 
          "name": [
            "Departamento de Matem\u00e1tica Aplicada y Estad\u00edstica, Universidad Polit\u00e9cnica de Cartagena, Cartagena, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amat", 
        "givenName": "S.", 
        "id": "sg:person.014026734377.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014026734377.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argyros", 
        "givenName": "Ioannis K.", 
        "id": "sg:person.015707547201.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Matem\u00e1tica Aplicada y Estad\u00edstica, Universidad Polit\u00e9cnica de Cartagena, Cartagena, Spain", 
          "id": "http://www.grid.ac/institutes/grid.218430.c", 
          "name": [
            "Departamento de Matem\u00e1tica Aplicada y Estad\u00edstica, Universidad Polit\u00e9cnica de Cartagena, Cartagena, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Busquier", 
        "givenName": "S.", 
        "id": "sg:person.010734127371.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010734127371.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Escuela de Ingenier\u00eda, Universidad Internacional de La Rioja, Av Gran V\u00eda Rey Juan Carlos I, 41, 26002, Logro\u00f1o, La Rioja, Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Escuela de Ingenier\u00eda, Universidad Internacional de La Rioja, Av Gran V\u00eda Rey Juan Carlos I, 41, 26002, Logro\u00f1o, La Rioja, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magre\u00f1\u00e1n", 
        "givenName": "\u00c1. Alberto", 
        "id": "sg:person.013576636334.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00010-004-2733-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039772729", 
          "https://doi.org/10.1007/s00010-004-2733-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10543-009-0226-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001329581", 
          "https://doi.org/10.1007/s10543-009-0226-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02238803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038780485", 
          "https://doi.org/10.1007/bf02238803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002459911012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049334328", 
          "https://doi.org/10.1007/s002459911012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02241866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008743953", 
          "https://doi.org/10.1007/bf02241866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-009-9302-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000709826", 
          "https://doi.org/10.1007/s11075-009-9302-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-011-9519-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024284171", 
          "https://doi.org/10.1007/s11075-011-9519-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542511040051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002057161", 
          "https://doi.org/10.1134/s0965542511040051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-010-9438-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007576986", 
          "https://doi.org/10.1007/s11075-010-9438-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06-06", 
    "datePublishedReg": "2016-06-06", 
    "description": "We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212\u2013223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24\u201332 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257\u2013264 1977; Candela and Marquina. Computing 44, 169\u2013184 1990; Candela and Marquina. Computing 45(4), 355\u2013367 1990; Chun. Appl. Math. Comput. 190(2), 1432\u20131437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686\u2013698 2007; Deghan. Comput. Appl Math. 29(1), 19\u201330 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513\u2013519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356\u2013365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686\u2013698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356\u2013365 2012; Ezquerro and Hern\u00e1ndez. Appl. Math. Optim. 41(2), 227\u2013236 2000; Ezquerro and Hern\u00e1ndez. BIT Numer. Math. 49, 325\u2013342 2009; Ezquerro and Hern\u00e1ndez. J. Math. Anal. Appl. 303, 591\u2013601 2005; Guti\u00e9rrez and Hern\u00e1ndez. Comput. Math. Appl. 36(7), 1\u20138 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21\u201331 1991; Gonz\u00e1lez-Crespo et al. Expert Syst. Appl. 40(18), 7381\u20137390 2013; Hern\u00e1ndez. Comput. Math. Appl. 41(3-4), 433\u2013455 2001; Hern\u00e1ndez and Salanova. Southwest J. Pure Appl. Math. 1, 29\u201340 1999; Jarratt. Math. Comput. 20(95), 434\u2013437 1966; Kou and Li. Appl. Math. Comput. 189, 1816\u20131821 2007; Kou and Wang. Numer. Algor. 60, 369\u2013390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60\u201366 2010; Magre\u00f1\u00e1n. Appl. Math. Comput. 233, 29\u201338 2014; Magre\u00f1\u00e1n. Appl. Math. Comput. 248, 215\u2013224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873\u2013887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585\u2013603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129\u2013142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468\u2013477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441\u2013456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fr\u00e9chet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11075-016-0152-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050467", 
        "issn": [
          "1017-1398", 
          "1572-9265"
        ], 
        "name": "Numerical Algorithms", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "keywords": [
      "earlier studies", 
      "hypothesis", 
      "contrast", 
      "study", 
      "family", 
      "conditions", 
      "analysis", 
      "method", 
      "choice", 
      "derivatives", 
      "order", 
      "parameters", 
      "only hypothesis", 
      "dynamics", 
      "example", 
      "solution", 
      "operators", 
      "convergence", 
      "unique solution", 
      "equations", 
      "fifth derivative", 
      "sufficient convergence conditions", 
      "weak conditions", 
      "local convergence analysis", 
      "convergence analysis", 
      "higher convergence order", 
      "convergence order", 
      "nonlinear equations", 
      "convergence conditions", 
      "first Fr\u00e9chet derivative", 
      "Fr\u00e9chet derivative", 
      "local convergence", 
      "numerical examples"
    ], 
    "name": "Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions", 
    "pagination": "371-391", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007499341"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11075-016-0152-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11075-016-0152-5", 
      "https://app.dimensions.ai/details/publication/pub.1007499341"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_700.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11075-016-0152-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11075-016-0152-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11075-016-0152-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11075-016-0152-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11075-016-0152-5'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      22 PREDICATES      70 URIs      50 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11075-016-0152-5 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 anzsrc-for:08
5 anzsrc-for:0802
6 schema:author N725a41b20f4d439486e539b0fae95a2c
7 schema:citation sg:pub.10.1007/bf02238803
8 sg:pub.10.1007/bf02241866
9 sg:pub.10.1007/s00010-004-2733-y
10 sg:pub.10.1007/s002459911012
11 sg:pub.10.1007/s10543-009-0226-z
12 sg:pub.10.1007/s11075-009-9302-3
13 sg:pub.10.1007/s11075-010-9438-1
14 sg:pub.10.1007/s11075-011-9519-9
15 sg:pub.10.1134/s0965542511040051
16 schema:datePublished 2016-06-06
17 schema:datePublishedReg 2016-06-06
18 schema:description We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N4b1a155928ed47a4833044e2774575f3
23 Ne351a9c5c17b4ebda0b73375f02288cb
24 sg:journal.1050467
25 schema:keywords Fréchet derivative
26 analysis
27 choice
28 conditions
29 contrast
30 convergence
31 convergence analysis
32 convergence conditions
33 convergence order
34 derivatives
35 dynamics
36 earlier studies
37 equations
38 example
39 family
40 fifth derivative
41 first Fréchet derivative
42 higher convergence order
43 hypothesis
44 local convergence
45 local convergence analysis
46 method
47 nonlinear equations
48 numerical examples
49 only hypothesis
50 operators
51 order
52 parameters
53 solution
54 study
55 sufficient convergence conditions
56 unique solution
57 weak conditions
58 schema:name Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions
59 schema:pagination 371-391
60 schema:productId Na553101388da442f91400a7c2eb41dd7
61 Nbba4d11d779143218ed77a7d0f9ee166
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007499341
63 https://doi.org/10.1007/s11075-016-0152-5
64 schema:sdDatePublished 2022-05-20T07:31
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N76c79dd221cd4422ae159ac7fd2f7d99
67 schema:url https://doi.org/10.1007/s11075-016-0152-5
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N483c26f6326d4d3fb63eed29b7c539a6 rdf:first sg:person.010734127371.53
72 rdf:rest N589670ddbde841c5b18329f9dc03839f
73 N4b1a155928ed47a4833044e2774575f3 schema:issueNumber 2
74 rdf:type schema:PublicationIssue
75 N589670ddbde841c5b18329f9dc03839f rdf:first sg:person.013576636334.52
76 rdf:rest rdf:nil
77 N725a41b20f4d439486e539b0fae95a2c rdf:first sg:person.014026734377.66
78 rdf:rest Nbd23175897fb4ea58fa1e2a2dc81d6d0
79 N76c79dd221cd4422ae159ac7fd2f7d99 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Na553101388da442f91400a7c2eb41dd7 schema:name doi
82 schema:value 10.1007/s11075-016-0152-5
83 rdf:type schema:PropertyValue
84 Nbba4d11d779143218ed77a7d0f9ee166 schema:name dimensions_id
85 schema:value pub.1007499341
86 rdf:type schema:PropertyValue
87 Nbd23175897fb4ea58fa1e2a2dc81d6d0 rdf:first sg:person.015707547201.06
88 rdf:rest N483c26f6326d4d3fb63eed29b7c539a6
89 Ne351a9c5c17b4ebda0b73375f02288cb schema:volumeNumber 74
90 rdf:type schema:PublicationVolume
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
95 schema:name Applied Mathematics
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
98 schema:name Numerical and Computational Mathematics
99 rdf:type schema:DefinedTerm
100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information and Computing Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
104 schema:name Computation Theory and Mathematics
105 rdf:type schema:DefinedTerm
106 sg:journal.1050467 schema:issn 1017-1398
107 1572-9265
108 schema:name Numerical Algorithms
109 schema:publisher Springer Nature
110 rdf:type schema:Periodical
111 sg:person.010734127371.53 schema:affiliation grid-institutes:grid.218430.c
112 schema:familyName Busquier
113 schema:givenName S.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010734127371.53
115 rdf:type schema:Person
116 sg:person.013576636334.52 schema:affiliation grid-institutes:grid.13825.3d
117 schema:familyName Magreñán
118 schema:givenName Á. Alberto
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52
120 rdf:type schema:Person
121 sg:person.014026734377.66 schema:affiliation grid-institutes:grid.218430.c
122 schema:familyName Amat
123 schema:givenName S.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014026734377.66
125 rdf:type schema:Person
126 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
127 schema:familyName Argyros
128 schema:givenName Ioannis K.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
130 rdf:type schema:Person
131 sg:pub.10.1007/bf02238803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038780485
132 https://doi.org/10.1007/bf02238803
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bf02241866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008743953
135 https://doi.org/10.1007/bf02241866
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00010-004-2733-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039772729
138 https://doi.org/10.1007/s00010-004-2733-y
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s002459911012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049334328
141 https://doi.org/10.1007/s002459911012
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10543-009-0226-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329581
144 https://doi.org/10.1007/s10543-009-0226-z
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11075-009-9302-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000709826
147 https://doi.org/10.1007/s11075-009-9302-3
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11075-010-9438-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007576986
150 https://doi.org/10.1007/s11075-010-9438-1
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11075-011-9519-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024284171
153 https://doi.org/10.1007/s11075-011-9519-9
154 rdf:type schema:CreativeWork
155 sg:pub.10.1134/s0965542511040051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002057161
156 https://doi.org/10.1134/s0965542511040051
157 rdf:type schema:CreativeWork
158 grid-institutes:grid.13825.3d schema:alternateName Escuela de Ingeniería, Universidad Internacional de La Rioja, Av Gran Vía Rey Juan Carlos I, 41, 26002, Logroño, La Rioja, Spain
159 schema:name Escuela de Ingeniería, Universidad Internacional de La Rioja, Av Gran Vía Rey Juan Carlos I, 41, 26002, Logroño, La Rioja, Spain
160 rdf:type schema:Organization
161 grid-institutes:grid.218430.c schema:alternateName Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Cartagena, Spain
162 schema:name Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Cartagena, Spain
163 rdf:type schema:Organization
164 grid-institutes:grid.253592.a schema:alternateName Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA
165 schema:name Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...