Ontology type: schema:ScholarlyArticle
2016-06-06
AUTHORSS. Amat, Ioannis K. Argyros, S. Busquier, Á. Alberto Magreñán
ABSTRACTWe present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study More... »
PAGES371-391
http://scigraph.springernature.com/pub.10.1007/s11075-016-0152-5
DOIhttp://dx.doi.org/10.1007/s11075-016-0152-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1007499341
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Departamento de Matem\u00e1tica Aplicada y Estad\u00edstica, Universidad Polit\u00e9cnica de Cartagena, Cartagena, Spain",
"id": "http://www.grid.ac/institutes/grid.218430.c",
"name": [
"Departamento de Matem\u00e1tica Aplicada y Estad\u00edstica, Universidad Polit\u00e9cnica de Cartagena, Cartagena, Spain"
],
"type": "Organization"
},
"familyName": "Amat",
"givenName": "S.",
"id": "sg:person.014026734377.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014026734377.66"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA",
"id": "http://www.grid.ac/institutes/grid.253592.a",
"name": [
"Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA"
],
"type": "Organization"
},
"familyName": "Argyros",
"givenName": "Ioannis K.",
"id": "sg:person.015707547201.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Departamento de Matem\u00e1tica Aplicada y Estad\u00edstica, Universidad Polit\u00e9cnica de Cartagena, Cartagena, Spain",
"id": "http://www.grid.ac/institutes/grid.218430.c",
"name": [
"Departamento de Matem\u00e1tica Aplicada y Estad\u00edstica, Universidad Polit\u00e9cnica de Cartagena, Cartagena, Spain"
],
"type": "Organization"
},
"familyName": "Busquier",
"givenName": "S.",
"id": "sg:person.010734127371.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010734127371.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Escuela de Ingenier\u00eda, Universidad Internacional de La Rioja, Av Gran V\u00eda Rey Juan Carlos I, 41, 26002, Logro\u00f1o, La Rioja, Spain",
"id": "http://www.grid.ac/institutes/grid.13825.3d",
"name": [
"Escuela de Ingenier\u00eda, Universidad Internacional de La Rioja, Av Gran V\u00eda Rey Juan Carlos I, 41, 26002, Logro\u00f1o, La Rioja, Spain"
],
"type": "Organization"
},
"familyName": "Magre\u00f1\u00e1n",
"givenName": "\u00c1. Alberto",
"id": "sg:person.013576636334.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00010-004-2733-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039772729",
"https://doi.org/10.1007/s00010-004-2733-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10543-009-0226-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001329581",
"https://doi.org/10.1007/s10543-009-0226-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02238803",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038780485",
"https://doi.org/10.1007/bf02238803"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002459911012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049334328",
"https://doi.org/10.1007/s002459911012"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02241866",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008743953",
"https://doi.org/10.1007/bf02241866"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11075-009-9302-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000709826",
"https://doi.org/10.1007/s11075-009-9302-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11075-011-9519-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024284171",
"https://doi.org/10.1007/s11075-011-9519-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s0965542511040051",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002057161",
"https://doi.org/10.1134/s0965542511040051"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11075-010-9438-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007576986",
"https://doi.org/10.1007/s11075-010-9438-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-06-06",
"datePublishedReg": "2016-06-06",
"description": "We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212\u2013223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24\u201332 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257\u2013264 1977; Candela and Marquina. Computing 44, 169\u2013184 1990; Candela and Marquina. Computing 45(4), 355\u2013367 1990; Chun. Appl. Math. Comput. 190(2), 1432\u20131437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686\u2013698 2007; Deghan. Comput. Appl Math. 29(1), 19\u201330 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513\u2013519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356\u2013365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686\u2013698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356\u2013365 2012; Ezquerro and Hern\u00e1ndez. Appl. Math. Optim. 41(2), 227\u2013236 2000; Ezquerro and Hern\u00e1ndez. BIT Numer. Math. 49, 325\u2013342 2009; Ezquerro and Hern\u00e1ndez. J. Math. Anal. Appl. 303, 591\u2013601 2005; Guti\u00e9rrez and Hern\u00e1ndez. Comput. Math. Appl. 36(7), 1\u20138 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21\u201331 1991; Gonz\u00e1lez-Crespo et al. Expert Syst. Appl. 40(18), 7381\u20137390 2013; Hern\u00e1ndez. Comput. Math. Appl. 41(3-4), 433\u2013455 2001; Hern\u00e1ndez and Salanova. Southwest J. Pure Appl. Math. 1, 29\u201340 1999; Jarratt. Math. Comput. 20(95), 434\u2013437 1966; Kou and Li. Appl. Math. Comput. 189, 1816\u20131821 2007; Kou and Wang. Numer. Algor. 60, 369\u2013390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60\u201366 2010; Magre\u00f1\u00e1n. Appl. Math. Comput. 233, 29\u201338 2014; Magre\u00f1\u00e1n. Appl. Math. Comput. 248, 215\u2013224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873\u2013887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585\u2013603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129\u2013142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468\u2013477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441\u2013456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fr\u00e9chet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study",
"genre": "article",
"id": "sg:pub.10.1007/s11075-016-0152-5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1050467",
"issn": [
"1017-1398",
"1572-9265"
],
"name": "Numerical Algorithms",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "74"
}
],
"keywords": [
"earlier studies",
"hypothesis",
"contrast",
"study",
"family",
"conditions",
"analysis",
"method",
"choice",
"derivatives",
"order",
"parameters",
"only hypothesis",
"dynamics",
"example",
"solution",
"operators",
"convergence",
"unique solution",
"equations",
"fifth derivative",
"sufficient convergence conditions",
"weak conditions",
"local convergence analysis",
"convergence analysis",
"higher convergence order",
"convergence order",
"nonlinear equations",
"convergence conditions",
"first Fr\u00e9chet derivative",
"Fr\u00e9chet derivative",
"local convergence",
"numerical examples"
],
"name": "Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions",
"pagination": "371-391",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1007499341"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11075-016-0152-5"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11075-016-0152-5",
"https://app.dimensions.ai/details/publication/pub.1007499341"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_700.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11075-016-0152-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11075-016-0152-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11075-016-0152-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11075-016-0152-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11075-016-0152-5'
This table displays all metadata directly associated to this object as RDF triples.
166 TRIPLES
22 PREDICATES
70 URIs
50 LITERALS
6 BLANK NODES