A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-03-03

AUTHORS

Ioannis K. Argyros, Á. Alberto Magreñán

ABSTRACT

We study the local convergence of Chebyshev-Halley-type methods of convergence order at least five to approximate a locally unique solution of a nonlinear equation. Earlier studies such as Behl (2013), Bruns and Bailey (Chem. Eng. Sci 32, 257–264, 1977), Candela and Marquina (Computing 44, 169–184, 1990), (Computing 45(4):355–367, 1990), Chicharro et al. (2013), Chun (Appl. Math. Comput, 190(2):1432–1437, 1990), Cordero et al. (Appl.Math. Lett. 26, 842–848, 2013), Cordero et al. (Appl. Math. Comput. 219, 8568–8583, 2013), Cordero and Torregrosa (Appl. Math. Comput. 190, 686–698, 2007), Ezquerro and Hernández (Appl. Math. Optim. 41(2):227–236, 2000), (BIT Numer. Math. 49, 325–342, 2009), (J. Math. Anal. Appl. 303, 591–601, 2005), Gutiérrez and Hernández (Comput. Math. Applic. 36(7):1–8, 1998), Ganesh and Joshi (IMA J. Numer. Anal. 11, 21–31, 1991), Hernández (Comput. Math. Applic. 41(3–4):433–455, 2001), Hernández and Salanova (Southwest J. Pure Appl. Math. 1, 29–40, 1999), Jarratt (Math. Comput. 20(95):434–437, 1996), Kou and Li (Appl. Math. Comput. 189, 1816–1821, 2007), Li (Appl. Math. Comput. 235, 221–225, 2014), Ren et al. (Numer. Algorithm. 52(4):585–603, 2009), Wang et al. (Numer. Algorithm. 57, 441–456, 2011), Kou et al. (Numer. Algorithm. 60, 369–390, 2012) show convergence under hypotheses on the third derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative. Hence, the applicability of the method is expanded. The dynamical analyses of these methods are also studied. Finally, numerical examples are also provided to show that our results apply to solve equations in cases where earlier studies cannot apply. More... »

PAGES

1-23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11075-015-9981-x

DOI

http://dx.doi.org/10.1007/s11075-015-9981-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010386259


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argyros", 
        "givenName": "Ioannis K.", 
        "id": "sg:person.015707547201.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Internacional de La Rioja, Escuela de Ingenier\u00eda C/Gran V\u00eda 41, 26005, Logro\u00f1o (La Rioja), Spain", 
          "id": "http://www.grid.ac/institutes/grid.13825.3d", 
          "name": [
            "Universidad Internacional de La Rioja, Escuela de Ingenier\u00eda C/Gran V\u00eda 41, 26005, Logro\u00f1o (La Rioja), Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magre\u00f1\u00e1n", 
        "givenName": "\u00c1. Alberto", 
        "id": "sg:person.013576636334.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11075-009-9302-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000709826", 
          "https://doi.org/10.1007/s11075-009-9302-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-010-9438-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007576986", 
          "https://doi.org/10.1007/s11075-010-9438-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-011-9519-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024284171", 
          "https://doi.org/10.1007/s11075-011-9519-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10543-009-0226-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001329581", 
          "https://doi.org/10.1007/s10543-009-0226-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002459911012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049334328", 
          "https://doi.org/10.1007/s002459911012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02238803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038780485", 
          "https://doi.org/10.1007/bf02238803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00010-004-2733-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039772729", 
          "https://doi.org/10.1007/s00010-004-2733-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-03-03", 
    "datePublishedReg": "2015-03-03", 
    "description": "We study the local convergence of Chebyshev-Halley-type methods of convergence order at least five to approximate a locally unique solution of a nonlinear equation. Earlier studies such as Behl (2013), Bruns and Bailey (Chem. Eng. Sci 32, 257\u2013264, 1977), Candela and Marquina (Computing 44, 169\u2013184, 1990), (Computing 45(4):355\u2013367, 1990), Chicharro et al. (2013), Chun (Appl. Math. Comput, 190(2):1432\u20131437, 1990), Cordero et al. (Appl.Math. Lett. 26, 842\u2013848, 2013), Cordero et al. (Appl. Math. Comput. 219, 8568\u20138583, 2013), Cordero and Torregrosa (Appl. Math. Comput. 190, 686\u2013698, 2007), Ezquerro and Hern\u00e1ndez (Appl. Math. Optim. 41(2):227\u2013236, 2000), (BIT Numer. Math. 49, 325\u2013342, 2009), (J. Math. Anal. Appl. 303, 591\u2013601, 2005), Guti\u00e9rrez and Hern\u00e1ndez (Comput. Math. Applic. 36(7):1\u20138, 1998), Ganesh and Joshi (IMA J. Numer. Anal. 11, 21\u201331, 1991), Hern\u00e1ndez (Comput. Math. Applic. 41(3\u20134):433\u2013455, 2001), Hern\u00e1ndez and Salanova (Southwest J. Pure Appl. Math. 1, 29\u201340, 1999), Jarratt (Math. Comput. 20(95):434\u2013437, 1996), Kou and Li (Appl. Math. Comput. 189, 1816\u20131821, 2007), Li (Appl. Math. Comput. 235, 221\u2013225, 2014), Ren et al. (Numer. Algorithm. 52(4):585\u2013603, 2009), Wang et al. (Numer. Algorithm. 57, 441\u2013456, 2011), Kou et al. (Numer. Algorithm. 60, 369\u2013390, 2012) show convergence under hypotheses on the third derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative. Hence, the applicability of the method is expanded. The dynamical analyses of these methods are also studied. Finally, numerical examples are also provided to show that our results apply to solve equations in cases where earlier studies cannot apply.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11075-015-9981-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050467", 
        "issn": [
          "1017-1398", 
          "1572-9265"
        ], 
        "name": "Numerical Algorithms", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "keywords": [
      "Chebyshev\u2013Halley", 
      "Cordero et al", 
      "type method", 
      "local convergence", 
      "Kou et al", 
      "convergence order", 
      "nonlinear equations", 
      "dynamical analysis", 
      "numerical examples", 
      "unique solution", 
      "third derivative", 
      "second derivative", 
      "et al", 
      "Ren et al", 
      "first derivative", 
      "convergence", 
      "equations", 
      "Wang et al", 
      "Jarratt", 
      "Hern\u00e1ndez", 
      "Kou", 
      "dynamics", 
      "al", 
      "solution", 
      "derivatives", 
      "Candela", 
      "applicability", 
      "Ganesh", 
      "Joshi", 
      "Brun", 
      "order", 
      "Cordero", 
      "Guti\u00e9rrez", 
      "Salanova", 
      "earlier studies", 
      "cases", 
      "Li", 
      "Marquina", 
      "results", 
      "Behl", 
      "analysis", 
      "Chun", 
      "Bailey", 
      "hypothesis", 
      "study", 
      "method", 
      "example"
    ], 
    "name": "A study on the local convergence and the dynamics of Chebyshev\u2013Halley\u2013type methods free from second derivative", 
    "pagination": "1-23", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010386259"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11075-015-9981-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11075-015-9981-x", 
      "https://app.dimensions.ai/details/publication/pub.1010386259"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_648.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11075-015-9981-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11075-015-9981-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11075-015-9981-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11075-015-9981-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11075-015-9981-x'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      22 PREDICATES      79 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11075-015-9981-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbf1fd2901e1c4cf9b52d1e78f3772f6e
4 schema:citation sg:pub.10.1007/bf02238803
5 sg:pub.10.1007/s00010-004-2733-y
6 sg:pub.10.1007/s002459911012
7 sg:pub.10.1007/s10543-009-0226-z
8 sg:pub.10.1007/s11075-009-9302-3
9 sg:pub.10.1007/s11075-010-9438-1
10 sg:pub.10.1007/s11075-011-9519-9
11 schema:datePublished 2015-03-03
12 schema:datePublishedReg 2015-03-03
13 schema:description We study the local convergence of Chebyshev-Halley-type methods of convergence order at least five to approximate a locally unique solution of a nonlinear equation. Earlier studies such as Behl (2013), Bruns and Bailey (Chem. Eng. Sci 32, 257–264, 1977), Candela and Marquina (Computing 44, 169–184, 1990), (Computing 45(4):355–367, 1990), Chicharro et al. (2013), Chun (Appl. Math. Comput, 190(2):1432–1437, 1990), Cordero et al. (Appl.Math. Lett. 26, 842–848, 2013), Cordero et al. (Appl. Math. Comput. 219, 8568–8583, 2013), Cordero and Torregrosa (Appl. Math. Comput. 190, 686–698, 2007), Ezquerro and Hernández (Appl. Math. Optim. 41(2):227–236, 2000), (BIT Numer. Math. 49, 325–342, 2009), (J. Math. Anal. Appl. 303, 591–601, 2005), Gutiérrez and Hernández (Comput. Math. Applic. 36(7):1–8, 1998), Ganesh and Joshi (IMA J. Numer. Anal. 11, 21–31, 1991), Hernández (Comput. Math. Applic. 41(3–4):433–455, 2001), Hernández and Salanova (Southwest J. Pure Appl. Math. 1, 29–40, 1999), Jarratt (Math. Comput. 20(95):434–437, 1996), Kou and Li (Appl. Math. Comput. 189, 1816–1821, 2007), Li (Appl. Math. Comput. 235, 221–225, 2014), Ren et al. (Numer. Algorithm. 52(4):585–603, 2009), Wang et al. (Numer. Algorithm. 57, 441–456, 2011), Kou et al. (Numer. Algorithm. 60, 369–390, 2012) show convergence under hypotheses on the third derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative. Hence, the applicability of the method is expanded. The dynamical analyses of these methods are also studied. Finally, numerical examples are also provided to show that our results apply to solve equations in cases where earlier studies cannot apply.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N8dbe1cbf2a1d47839fba7d88136a55d3
18 Nf1ddc002ba064ff39c6a089b7eccec39
19 sg:journal.1050467
20 schema:keywords Bailey
21 Behl
22 Brun
23 Candela
24 Chebyshev–Halley
25 Chun
26 Cordero
27 Cordero et al
28 Ganesh
29 Gutiérrez
30 Hernández
31 Jarratt
32 Joshi
33 Kou
34 Kou et al
35 Li
36 Marquina
37 Ren et al
38 Salanova
39 Wang et al
40 al
41 analysis
42 applicability
43 cases
44 convergence
45 convergence order
46 derivatives
47 dynamical analysis
48 dynamics
49 earlier studies
50 equations
51 et al
52 example
53 first derivative
54 hypothesis
55 local convergence
56 method
57 nonlinear equations
58 numerical examples
59 order
60 results
61 second derivative
62 solution
63 study
64 third derivative
65 type method
66 unique solution
67 schema:name A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative
68 schema:pagination 1-23
69 schema:productId N7cf76d4f3b594bcf826931937b2618e7
70 N9393f178f7cd43bc8291c6951d4f12ae
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010386259
72 https://doi.org/10.1007/s11075-015-9981-x
73 schema:sdDatePublished 2022-05-20T07:30
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Ne697ca1719724e6e835d9e431026d5db
76 schema:url https://doi.org/10.1007/s11075-015-9981-x
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N7cf76d4f3b594bcf826931937b2618e7 schema:name dimensions_id
81 schema:value pub.1010386259
82 rdf:type schema:PropertyValue
83 N893b096b64c945ee8d26a4ab0210d3aa rdf:first sg:person.013576636334.52
84 rdf:rest rdf:nil
85 N8dbe1cbf2a1d47839fba7d88136a55d3 schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 N9393f178f7cd43bc8291c6951d4f12ae schema:name doi
88 schema:value 10.1007/s11075-015-9981-x
89 rdf:type schema:PropertyValue
90 Nbf1fd2901e1c4cf9b52d1e78f3772f6e rdf:first sg:person.015707547201.06
91 rdf:rest N893b096b64c945ee8d26a4ab0210d3aa
92 Ne697ca1719724e6e835d9e431026d5db schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Nf1ddc002ba064ff39c6a089b7eccec39 schema:volumeNumber 71
95 rdf:type schema:PublicationVolume
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
100 schema:name Pure Mathematics
101 rdf:type schema:DefinedTerm
102 sg:journal.1050467 schema:issn 1017-1398
103 1572-9265
104 schema:name Numerical Algorithms
105 schema:publisher Springer Nature
106 rdf:type schema:Periodical
107 sg:person.013576636334.52 schema:affiliation grid-institutes:grid.13825.3d
108 schema:familyName Magreñán
109 schema:givenName Á. Alberto
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576636334.52
111 rdf:type schema:Person
112 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
113 schema:familyName Argyros
114 schema:givenName Ioannis K.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
116 rdf:type schema:Person
117 sg:pub.10.1007/bf02238803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038780485
118 https://doi.org/10.1007/bf02238803
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00010-004-2733-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039772729
121 https://doi.org/10.1007/s00010-004-2733-y
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s002459911012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049334328
124 https://doi.org/10.1007/s002459911012
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10543-009-0226-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329581
127 https://doi.org/10.1007/s10543-009-0226-z
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11075-009-9302-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000709826
130 https://doi.org/10.1007/s11075-009-9302-3
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11075-010-9438-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007576986
133 https://doi.org/10.1007/s11075-010-9438-1
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11075-011-9519-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024284171
136 https://doi.org/10.1007/s11075-011-9519-9
137 rdf:type schema:CreativeWork
138 grid-institutes:grid.13825.3d schema:alternateName Universidad Internacional de La Rioja, Escuela de Ingeniería C/Gran Vía 41, 26005, Logroño (La Rioja), Spain
139 schema:name Universidad Internacional de La Rioja, Escuela de Ingeniería C/Gran Vía 41, 26005, Logroño (La Rioja), Spain
140 rdf:type schema:Organization
141 grid-institutes:grid.253592.a schema:alternateName Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA
142 schema:name Department of Mathematics Sciences, Cameron University, 73505, Lawton, OK, USA
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...