Ontology type: schema:ScholarlyArticle Open Access: True
2016-09
AUTHORSDaniel J. Bates, Jonathan D. Hauenstein, Matthew E. Niemerg, Frank Sottile
ABSTRACTWe give a Descartes’-like bound on the number of positive solutions to a system of fewnomials that holds when its exponent vectors are not in convex position and a sign condition is satisfied. This was discovered while developing algorithms and software for computing the Gale transform of a fewnomial system, which is our main goal. This software is a component of a package we are developing for Khovanskii-Rolle continuation, which is a numerical algorithm to compute the real solutions to a system of fewnomials. More... »
PAGES281-304
http://scigraph.springernature.com/pub.10.1007/s11075-015-0095-2
DOIhttp://dx.doi.org/10.1007/s11075-015-0095-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026617082
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computer Software",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Colorado State University",
"id": "https://www.grid.ac/institutes/grid.47894.36",
"name": [
"Department of Mathematics, Colorado State University, 80523-1874, Fort Collins, CO, USA"
],
"type": "Organization"
},
"familyName": "Bates",
"givenName": "Daniel J.",
"id": "sg:person.013704354301.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013704354301.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Notre Dame",
"id": "https://www.grid.ac/institutes/grid.131063.6",
"name": [
"Department of Applied & Computational Mathematics & Statistics, University of Notre Dame, 46556, Notre Dame, IN, USA"
],
"type": "Organization"
},
"familyName": "Hauenstein",
"givenName": "Jonathan D.",
"id": "sg:person.011735560366.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011735560366.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Fields Institute for Research in Mathematical Sciences",
"id": "https://www.grid.ac/institutes/grid.249304.8",
"name": [
"Fields Institute for Research in Mathematical Sciences, University of Toronto, 222 College Street, M5T 3J1, Toronto, ON, Canada"
],
"type": "Organization"
},
"familyName": "Niemerg",
"givenName": "Matthew E.",
"id": "sg:person.016271460646.59",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016271460646.59"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Texas A&M University",
"id": "https://www.grid.ac/institutes/grid.264756.4",
"name": [
"Department of Mathematics, Texas A&M University, 77843, College Station, TX, USA"
],
"type": "Organization"
},
"familyName": "Sottile",
"givenName": "Frank",
"id": "sg:person.011654513175.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011654513175.09"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1006/jcom.2000.0563",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001726326"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10208-007-9004-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019722405",
"https://doi.org/10.1007/s10208-007-9004-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10208-007-9004-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019722405",
"https://doi.org/10.1007/s10208-007-9004-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10440-012-9782-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023291653",
"https://doi.org/10.1007/s10440-012-9782-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10208-014-9239-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024311148",
"https://doi.org/10.1007/s10208-014-9239-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0096-3003(87)90076-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026521817"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0096-3003(87)90076-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026521817"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/advg.2001.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029249783"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002000050114",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040639541",
"https://doi.org/10.1007/s002000050114"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/2331130.2331136",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045730855"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0377-0427(02)00702-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047720003"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0377-0427(02)00702-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047720003"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01457454",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048792211",
"https://doi.org/10.1007/bf01457454"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01457454",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048792211",
"https://doi.org/10.1007/bf01457454"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10208-011-9097-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050002119",
"https://doi.org/10.1007/s10208-011-9097-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-11620-9_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051637039",
"https://doi.org/10.1007/978-3-642-11620-9_9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-11620-9_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051637039",
"https://doi.org/10.1007/978-3-642-11620-9_9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/imrn/rnw199",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059692214"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5802/aif.2372",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073138156"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/5763",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098937331"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-09",
"datePublishedReg": "2016-09-01",
"description": "We give a Descartes\u2019-like bound on the number of positive solutions to a system of fewnomials that holds when its exponent vectors are not in convex position and a sign condition is satisfied. This was discovered while developing algorithms and software for computing the Gale transform of a fewnomial system, which is our main goal. This software is a component of a package we are developing for Khovanskii-Rolle continuation, which is a numerical algorithm to compute the real solutions to a system of fewnomials.",
"genre": "research_article",
"id": "sg:pub.10.1007/s11075-015-0095-2",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.3146494",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2997886",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3102111",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3126696",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.4058836",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1050467",
"issn": [
"1017-1398",
"1572-9265"
],
"name": "Numerical Algorithms",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "73"
}
],
"name": "Software for the Gale transform of fewnomial systems and a Descartes rule for fewnomials",
"pagination": "281-304",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"7ecd153415ecebcc6ce3e8ec104a522e9266c0d930f25f1b1122d936b1a58007"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11075-015-0095-2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026617082"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11075-015-0095-2",
"https://app.dimensions.ai/details/publication/pub.1026617082"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T02:14",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000532.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs11075-015-0095-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11075-015-0095-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11075-015-0095-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11075-015-0095-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11075-015-0095-2'
This table displays all metadata directly associated to this object as RDF triples.
153 TRIPLES
21 PREDICATES
42 URIs
19 LITERALS
7 BLANK NODES